Represent, Reconstruct and Generate the 4D Real World Jiahui Lei 2024 Sep

Main Contributors for today's work presented

Kostas Daniilidis UPenn

Yufu Wang UPenn

Agelos Kratimenos UPenn

Lingjie Liu UPenn

Yijia Weng

Stanford

Stanford

Yunzhou Song

UPenn

Jiahui Lei 雷嘉晖

I'm a CS Ph.D Student (2020-present) at University of Pennsylvania. My advisor is Prof. Kostas Daniilidis. I'm currently studying the representations and algorithms for 4D (3D+Time) and 3D geometric data that model and simulate the dynamic physical real world.

I received my bachelor's degree (2016-2020) in Automation with ranking 1st/141 and with honors from Chu Kochen Honors College Zhejiang University.

Email: leijh [AT] cis [dot] upenn [dot] edu / Google Scholar / Github

Research

MoSca: Dynamic Gaussian Fusion from Casual Videos via 4D Motion Scaffolds

Jiahui Lei, Yijia Weng, Adam Harley, Leonidas Guibas, Kostas Daniilidis Arxiv, 2024 project page / arXiv / video (YouTube) / video (Bilibili) / code (coming soon)

GART: Gaussian Articulated Template Models

Jiahui Lei, Yufu Wang, Georgios Pavlakos, Lingjie Liu, Kostas Daniilidis project page / arXiv / video (YouTube) / video (Bilibili) / code

Track Everything Everywhere Fast and Robustly

Yunzhou Song*, Jiahui Lei*, Ziyun Wang, Lingjie Liu, Kostas Daniilidis (* equal contribution) ECCV, 2024 project page / arXiv / video (YouTube)

Agelos Kratimenos, Jiahui Lei, Kostas Daniilidis ECCV, 2024 project page / arXiv

Congyue Deng

4D Modeling with Structure

GT (training) **Baseline** Ours Equi-Prior EM-Step Inference

MultiBody & Articulated Objects and Scenes Semi-Articulated Objects

General Non-Rigid Object and Scenes

Canonical

Function

Canonical Ma

The next big step of the 3D vision community is 4D – the dynamic real world perception. But dynamic vision/graphics problems are usually high dimensional – We need the **"Structure"**

Accuracy vs. Runt

Overview of today's talk

CaDeX and CaDeX++

Overview of today's talk

GART: Gaussian Articulated Template Models

DynMF and MoSca

CaDeX and CaDeX++

NAP: Neural 3D Articulation Prior

Jiahui Lei Congyue Deng Bokui Shen Leonidas Guibas Kostas Daniilidis Quick Intro + Results with narration

Sec.3.1

Sec.3.2

Sec.3.3

We treat an articulated object O as a template that, given the joint states $q \in Q_O$ in object's joint range Q_O , it returns the overall articulate mesh $\mathcal{M}(q)$ and the list of part poses $\mathcal{T}(q) = \{T_{\text{part}} \in SE(3)\}$. We compute the distance between two articulated objects in different joint states by

$$\tilde{d}(O_1, q_1, O_2, q_2) = \min_{T_i \in \mathcal{T}_1(q_1), T_j \in \mathcal{T}_2(q_2)} \left\{ D(T_i^{-1} \mathcal{M}_1(q_1), T_j^{-1} \mathcal{M}_2(q_2)) \right\},\tag{9}$$

where $T_i^{-1}\mathcal{M}_1(q_1)$ means canonicalizing the mesh using its *i*th part pose, and *D* is a standard distance that measures the distance between two static meshes. Specifically, we sample N = 2048 points from two meshes and compute their Chamfer Distance. Intuitively, the above distance measures the minimum distance between two posed articulated objects by trying all possible canonicalization combinations. Then, we define the instantiation distance between O_1 and O_2 as:

$$ID(O_{1}, O_{2}) = \mathbb{E}_{q_{1} \in \mathcal{U}(\mathcal{Q}_{O_{1}})} \left[\inf_{q_{2} \in \mathcal{Q}_{O_{2}}} \left(\tilde{d}(O_{1}, q_{1}, O_{2}, q_{2}) \right) \right] \\ + \mathbb{E}_{q_{2} \in \mathcal{U}(\mathcal{Q}_{O_{2}})} \left[\inf_{q_{1} \in \mathcal{Q}_{O_{1}}} \left(\tilde{d}(O_{1}, q_{1}, O_{2}, q_{2}) \right) \right],$$
(10)

where $q \in \mathcal{U}(\mathcal{Q}_O)$ means uniformly sample joint poses from the joint states range. The instantiation

	Part SDF Shape			Part Retrieval Shape		
Generative Paradigm/Method	\mid MMD \downarrow	$\text{COV}\uparrow$	1-NNA ↓	\mid MMD \downarrow	$\text{COV}\uparrow$	1-NNA \downarrow
Auto-Decoding (StructNet)	0.0435	0.1871	0.8820	0.0390	0.2316	0.8675
Variational Auto-Encoding (StructNet)	0.0311	0.3497	0.8085	0.0289	0.3363	0.7918
Autoregressive (ATISS-Tree)	0.0397	0.3808	0.6860	0.0333	0.4120	0.6782
Latent Diffusion (StructNet)	0.0314	0.4365	0.6269	0.0288	0.4477	0.6102
Articulation Graph Diffusion (Ours)	0.0268	0.4944	0.5690	0.0215	0.5234	0.5412

Table 1: Articualted object synthesis comparison with Instantiation Distance

Articulated object synthesis

Part2Motion -**L**

PartNet Imagination

NAP: Neural 3D Articulation Prior

Jiahui Lei Congyue Deng Bokui Shen Leonidas Guibas Kostas Daniilidis Quick Intro + Results with narration

Overview of today's talk

DynMF and MoSca

CaDeX and CaDeX++

The Rising of Point-Based Method

ZWICKER ET AL .: EWA SPLATTING

Fig. 6. Defining a texture function on the surface of a point-based object.

Figure 2: Volume rendering. Left: Illustrating the volume rendering equation in 2D. Right: Approximations in typical splatting algorithms.

camera space. Bottom: ray space. Left: local affine mapping. Right: exact mapping.

231

Jiahui 2 years ago

https://arxiv.org/abs/2203.13318 Point cloud will be great again

X arXiv.org

NPBG++: Accelerating Neural Point-Based Graphics

We present a new system (NPBG++) for the novel view synthesis (NVS) task that achieves high rendering realism with low scene fitting time. Our method efficiently leverages the multiview...

1 reply

#← Also sent to the channel

Jiahui 1 month ago

Point based geometry (Gaussian instead of Surfel) is great again now in 2024, what if we continued deeper in 2022

• GART • Gaussian Articulated Template Models

 \bigcirc

 \odot

 \bigcirc

0

 \bigcirc

 \bigcirc

0

Jiahui Lei Yufu Wang Georgios Pavlakos

Lingjie Liu Kostas Daniilidis

Figure 3: SMPL model. (a) Template mesh with blend weights indicated by color and joints shown in white. (b) With identity-driven blendshape contribution only; vertex and joint locations are linear in shape vector $\vec{\beta}$. (c) With the addition of of pose blend shapes in preparation for the split pose; note the expansion of the hips. (d) Deformed vertices reposed by dual quaternion skinning for the split pose.

Ruegg et al. BITE 2023

Figure 2. *D-SMAL shape space*. Shown are the mean shape and the 7 principal modes of deformation.

Alldieck et al. People Snapshot 2018

Geng et al. Instant-NVR 2023

Method Overview

ZJU-MoCap Results

Novel views

Novel Poses

Novel Poses

People-Snapshot Results [150+ Inference FPS]

More Challenging Mono-Sequences (UBC-Fashion)

Input Video

Instant-Avatar

In-the-Wild Challenging Mono-Sequences

Novel Views

Diverse Dog Breeds

Application: Text-to-GART

A policeman in blue uniform

A doctor in green surgical uniform

Skywalker

A yellow CyberPunk robot, silver skeleton

A frog character from a game

A silver robot with single red eye like hal9000

Overview of today's talk

NAP: Neural Articulation Prior DynMF and MoSca GART: Gaussian Articulated Template Models Accuracy vs. Runtin $q = [u,v,w]^T$

 $\sum_{p^{(0)} = [x^{(0)}, y^{(0)}]^{T} p^{(0)} = [x^{(0)}, y^{(0)}, z^{(0)}]} S_{j}$ CaDeX and CaDeX++

DynMF: Neural Motion Factorization for Real-time Dynamic View Synthesis with 3D Gaussian Splatting

Agelos Kratimenos Jiahui Lei Kostas Daniilidis

D-NeRF Dataset Results

Tracking

DynNeRF Dataset Results

DynNeRF Dataset Results

Ablation: L1 Loss

With L1Loss

Without L1Loss

With L1Loss

Without L1Loss

Motion Decomposition

Motion Decomposition Application

Wind in the background

More to read: Shape of Motion

Shape of Motion: 4D Reconstruction from a Single Video

Qianqian Wang^{1,2*}, Vickie Ye^{1*}, Hang Gao^{1*}, Jake Austin¹, Zhengqi Li², Angjoo Kanazawa¹ ¹UC Berkeley ²Google Research * Equal Contribution

Shape of Motion reconstructs a 4D scene from a single monocular video.

Jiahui Lei, Yijia Weng, Adam Harley, Leonidas Guibas, Kostas Daniilidis

Dynamic Gaussian Fusion from Casual Videos via 4D *Mo*tion *Sca*ffolds

MoSca

Input a casual monocular RGB video

Output a render-able dynamic 4D scene

MoSca

4D Motion Scaffolds

INL- FEE

-

MoSca Visual Results

- OpenAl SORA Generated Videos
- Internet Videos of Robots
- Movie Clips
- DAVIS Dataset In-the-Wild Videos
- Comparison on iPhone DyCheck dataset
- Comparison on NVIDIA dataset

RGBs

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

MoSca

Trajectories

RGBs

RGBs

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

MININ UMPLY

MoSca

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

Trajectories

Input Video

Thur and the second sec

RGBs

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

RGBs

MoSca

RGBs

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

"Godfather" Input Video

MoSca

Trajectories

RGBs

RGBs

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

"Mr. Bean" Input Video

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

MoSca

Trajectories

RGBs

RGBs

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

"Interstellar" Input Video

RGBs

RGBs

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

MoSca

Trajectories

RGBs

RGBs

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

RGBs

RGBs

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

RGBs

RGBs

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

Input Video

RGBs

MoSca

Trajectories

RGBs

RGBs

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

MoSca

Trajectories

RGBs

RGBs

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

RGBs

Our method does not directly handle reflectance and transparence as in standard 3DGS

RGBs

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

RGBs

RGBs

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

MoSca

Norm

Depths

Upper: Zoomed-out 3D View Bottom: Closer Novel Views

GT

T-NeRF

Nerfies

HyperNeRF

Tineuvox

PGDVS

RoDynRF

Ours

GT

T-NeRF

Nerfies

HyperNeRF

Tineuvox

PGDVS

RoDynRF

Ours

GT

NSFF

Tineuvox

HyperNeRF

DynamicNeRF

RoDynRF COLMAP Free

Ours COLMAP Free

MoSca: ARAP & Rendering may hide the ball

Input video

Recon input view

Look through, only show ball

How it works?

Long-term 2D Pixel Track

Monocular Metric Depth

Semantic Features

Input

(B) Background Stage Sec.3.5

Masked static Gaussian splatting background reconstruction

Tracking-Depth based Global Bundle Adjustment

Viz of Reproj-Error

Background GS Optimized from Masked 3DGS

Background Geometry Initialization: Focal

Measure Re-projection error between all view pairs.

Background Geometry Initialization: BA

4D Motion Scaffolds

INL- FEE

-

Lifted Initial Scaffolds

Geometric Optimization

Optimized Scaffolds

Dynamic 4D Scaffold

 Finally Optimize the unknown position and all node rotation with ARAP and ACC physical inspired energy

Render RGBs and Depths with GS-Splatting and supervise with observed images and inferred foundation mono-depths

on Motion Scaffolds

Render

Gaussians can be deformed via Scaffold to any time (shown as trajectories across long time)

Gaussians lifted from dense depth maps can be anchored on the Scaffolds and globally fused into any target rendering time

Photometric optimization

Step 0 Init

Optimized

Overview of today's talk

NAP: Neural Articulation Prior

GART: Gaussian Articulated Template Models

CaDeX: Learning **Canonical Deformation Coordinate Space** for Dynamic Surface Representation via Neural Homeomorphism

Jiahui Lei Kostas Daniilidis University of Pennsylvania CVPR 2022 **[Part | Method** (with narration)**]**

Implicit Flow Representation

Representation

Deformation Factorization: $p^{(j)} = \mathcal{F}_{ij}(p^{(i)}) = \mathcal{H}_j^{-1} \circ \mathcal{H}_i(p^{(i)})$ Canonical Shape: $U = \{q \mid q = [u, v, w]^T, OccField(q) = level\}$ Deformed Shapes: $S_i = \{p \mid p = [x^{(i)}, y^{(i)}, z^{(i)}]^T = \mathcal{H}_i^{-1}(q), \forall q \in U\}$

The deformation/correspondence factorization and its implementation guarantees:

- Cycle consistency
- Topology Preservation
- Volume Conservation (Optional, if use NICE)

Architecture

Comparison on D-FAUST Human Bodies

Canonical Shape

Input Observation

Ours

LPDC

O-Flow

Model Variants

PF-Encoder

ST-Encoder

Without Corr.-Loss

NICE-Homeo

Limitations

Since we use one single model weight for all animal categories, rare motions or instances sometimes can not be handled well.

Topology Changes

CaDeX++: Fast and Robust AnyPoint Tracking

In Progress

Long Term Tracking

Baselines

Optim-based: Omnimotion

Learning geometry from pure 2D input

FeedForward: Cotracker ...

Traditional 2D feature-based tracking tracking

Figure 3. **CoTracker architecture.** Visualization of one sliding window with M iterative updates. During one iteration, we update point tracks $\hat{P}^{(m)}$ and track features $Q^{(m)}$. $Q^{(0)}$ is initialized with the initially sampled features Q for all sliding windows, $\hat{P}^{(0)}$ with the starting locations for the first window. For other windows, $\hat{P}^{(0)}$ starts with predictions for frames processed in the preceding sliding window, and with the last predicted positions for the unseen frames. We compute visibility \hat{v} after the last update M.

Motivations

- Omnimotion has several drawbacks:
 - Extremely Slow
 - The 3D geometry is weak
 - Only take short term optical flow as local information
 - Weak robustness
 - Our contribution:
 - Better Deformation Homeomorphism: Locality and Non-Linearity.
 - Explicit take mono-depth into the model, introduce more 3D inductive bias.
 - Exploit the DINO information in long term.

Ours: Locality of the Deformation Network

Baseline: a large MLP + linear affine deform each layer

Ours: Local-feature & small MLP + nonlinear deform

Ours: Long Term Supervise from foundational features Optical flow: **dense**, but **"cut" by occlusion**

Long term info: global **coarse** feature matching

Feature Match: Success

PCA vis of features

Ours: Long Term Supervise from foundational features

CoTracker: Fail in texture-less area

CoTracker: trajectory disagree with optical flow on texture-less points

CoTracker: Fail in texture-less area

CoTracker: trajectory disagree with optical flow on texture-less points

Result

Result: Performance

Method			DAVIS				RGB-Stacking			
		AJ↑	$\delta^x_{avg}\uparrow$	OA↑	$TC\downarrow$	$AJ\uparrow$	$\delta^x_{avg}\uparrow$	OA↑	$TC\downarrow$	
Feed- forward	PIPs [11]	39.9	56.0	81.3	1.78	37.3	50.6	89.7	0.84	
	Flow-Walk [3]	35.2	51.4	80.6	0.90	41.3	55.7	92.2	0.13	
	MFT [24]	56.1	70.8	86.9	-	-	-	-	-	
	TAP-Net [8]	38.4	53.4	81.4	10.82	61.3	73.7	91.5	1.52	
	TAPIR [9]	59.8	72.3	87.6	-	66.2	77.4	93.3	-	
	CoTracker [14]	65.1	79.0	89.4	0.93	65.9	80.4	85.4	0.14	
Opti- mization	Connect RAFT [33]	30.7	46.6	80.2	0.93	42.0	56.4	91.5	0.18	
	Deformable Sprites [40]	20.6	32.9	69.7	2.07	45.0	58.3	84.0	0.99	
	OmniMotion [34]	51.7	67.5	85.3	0.74	77.5	87.0	93.5	0.13	
	Ours	59.4	77.4	85.9	0.68	75.4	87.1	93.6	0.15	

Result: Robustness

Comparison of convergence robustness

Method	$\delta^x_{avg} \uparrow$								
	motocross-jump				libby				
	min	max	mean	std	min	max	mean	std	
Omnimotion	4.7	60.5	26.3	26.1	2.3	18.0	8.86	5.9	
Ours w/o depth	4.4	65.5	44.3	23.5	1.8	20.2	12.7	6.6	
Ours	75.2	76.4	75.6	0.5	40.1	48.5	45.7	3.0	

Example of convergence and divergence

Ours: robust

Omnimotion: prone to fail

Summary

- Lift 2D video to 3D scene
- Locality & Non-linear deformation
- Long-term DinoV2 correspondence
- Low GPU memory consumption (Omnimotion: >10G, Ours: 3G on DAVIS)
- Fast
- Robust
- Performance gain (better than Omnimotion, comparable with feed-forward methods)

Limits

- Scene-Sensitive (Optimization-based)
- No semantic similarity constraint
- Fitting time increases with video length

Represent, Reconstruct and Generate the 4D Real World Jiahui Lei 2024 Sep