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4D Modeling with Structure

MultiBody & Articulated 
Objects and Scenes

Semi-Articulated 
Objects

General Non-Rigid Object and 
Scenes

The next big step of the 3D vision community is 4D – the dynamic real world perception.
But dynamic vision/graphics problems are usually high dimensional – We need the “Structure”
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Articulated object synthesis
Sec.4.2
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The Rising of Point-Based Method



GART
Gaussian Articulated Template Models

Jiahui Lei Yufu Wang Georgios Pavlakos 
Lingjie Liu Kostas Daniilidis





Loper et al. SMPL 2015 Ruegg et al. BITE 2023

Jiang et al. InstantAvatar 2023

Geng et al. Instant-NVR 2023

Alldieck et al. People Snapshot 2018

Zheng et al.
PointAvatar 2022



Underlying Shape and 
Radiance

Gaussian Mixture 
Approximation One point represents 

one component

Gaussian Mixture 
Approximation

Shape and Appearance Sec.3.2
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ZJU-MoCap Results

Novel views Novel Poses Novel views Novel Poses



People-Snapshot Results [150+ Inference FPS]

Novel views Novel Poses Novel views Novel Poses



More Challenging Mono-Sequences (UBC-Fashion)

Input Video GART Instant-Avatar Input Video GART Instant-Avatar



Input Video

Novel Views

Novel Poses

In-the-Wild Challenging Mono-Sequences



Diverse Dog Breeds



Application: Text-to-GART

A doctor in green surgical uniform

A yellow CyberPunk robot, silver skeleton A silver robot with single red eye like hal9000

A policeman in blue uniform

A frog character from a game

Skywalker
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DynMF: Neural Motion Factorization
for Real-time Dynamic View 

Synthesis with 3D Gaussian Splatting

Agelos Kratimenos Jiahui Lei Kostas Daniilidis





Dense Motion Field timeQuery time t

Canonical Space

Gaussian Attr
μc : base center
qc : base rotation
s : scale 
α : opacity
sph : color
c : motion coefficient

b1(t)

b2(t)

bB-1(t)

bB(t)

time

Learnable Motion Basis

Factorize

Query time t

Δx Δq

c
Motion Coefficient 

Blending
Coefficient

Regularization

Deformed 
Gaussian Attr:
μc+Δx: center
qc+Δq: rotation
s : scale 
α : opacity
sph : color



D-NeRF Dataset Results



Tracking



DynNeRF Dataset Results



DynNeRF Dataset Results



Ablation: L1 Loss

With L1Loss Without L1Loss With L1Loss Without L1Loss



Motion Decomposition



Motion Decomposition Application

Wind in the background Stabilized background motion



More to read: Shape of Motion



MoSca
Dynamic Gaussian Fusion

from Casual Videos
via 4DMotion Scaffolds

Jiahui Lei, Yijia Weng, Adam Harley,
Leonidas Guibas, Kostas Daniilidis



Input a casual monocular RGB video

Output a render-able dynamic 4D scene

MoSca



4D Motion Scaffolds



MoSca
Visual Results

- OpenAI SORA Generated Videos
- Internet Videos of Robots
- Movie Clips
- DAVIS Dataset In-the-Wild Videos
- Comparison on iPhone DyCheck dataset
- Comparison on NVIDIA dataset
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MoSca Trajectories RGBs
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MoSca Trajectories RGBs
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MoSca Trajectories RGBs

Our method does not directly handle reflectance and 
transparence as in standard 3DGSUpper: Zoomed-out 3D View

Bottom: Closer Novel ViewsRGBs MoSca

Input Video



MoSca Trajectories RGBs

Upper: Zoomed-out 3D View
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Upper: Zoomed-out 3D View
Bottom: Closer Novel Views

RGBs Normals Depths

RGBs Normals
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GT NSFF HyperNeRF Tineuvox DynamicNeRF RoDynRF
COLMAP Free

Ours
COLMAP Free



MoSca: ARAP & Rendering may hide the ball

Recon input view Look through, only show ball

Input video



How it works?





Input
Epipolar Errors Semantic Features

Monocular Metric DepthLong-term 2D Pixel Track



Tracking-Depth based Global
Bundle Adjustment

Background GS Optimized fromMasked 3DGS

Viz of Reproj-Error



Background Geometry Initialization: Focal

Tracks that always have small EpiError
Enumerate FOV, Analytical Solve SIM(3) Procrustes, 
Measure Re-projection error between all view pairs. 



Background Geometry Initialization: BA



4D Motion Scaffolds





Lifted Initial Scaffolds Optimized Scaffolds

Ready for Fusion

Geometric Optimization



Dynamic 4D Scaffold
• Finally Optimize

the unknown
position and all
node rotation
with ARAP and
ACC physical
inspired energy



Gaussians can be deformed via Scaffold to any time
(shown as trajectories across long time)

Gaussians lifted from dense depth maps can be anchored
on the Scaffolds and globally fused into any target

rendering time

Render
L( L( )), ,GT Prior



Photometric optimization

Step 0 Init Optimized
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CaDeX: Learning Canonical Deformation Coordinate Space 
for Dynamic Surface Representation 

via Neural Homeomorphism
Jiahui Lei Kostas Daniilidis

University of Pennsylvania
CVPR 2022 [Part I Method (with narration)]
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Representation

Canonical 
Shape

Deformation
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ℋ𝒊 is implemented by conditional 
Real-NVP or NICE that are simple 
and efficient.

The deformation/correspondence factorization
and its implementation guarantees:
• Cycle consistency
• Topology Preservation
• Volume Conservation (Optional, if use NICE)
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PF-Encoder ST-Encoder NICE-HomeoWithout Corr.-Loss

Model Variants
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Angle Generation on Articulated Objects
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Limitations

Topology Changes

Since we use one single model 
weight for all animal categories, 
rare motions or instances 
sometimes can not be handled 
well.



CaDeX: Learning Canonical Deformation Coordinate Space 
for Dynamic Surface Representation 

via Neural Homeomorphism
Thanks for watching! 

More details are in our paper!



CaDeX++: 
Fast and Robust AnyPoint 

Tracking
In Progress



Long Term Tracking:

Baselines

Optim-based: Omnimotion:

Learning geometry from pure 2D input

FeedForward: Cotracker …

Traditional 2D feature-based tracking



Motivations

- Omnimotion has several drawbacks:
- Extremely Slow
- The 3D geometry is weak
- Only take short term optical flow as local information
- Weak robustness

- Our contribution:
- Better Deformation Homeomorphism: Locality and Non-Linearity.
- Explicit take mono-depth into the model, introduce more 3D inductive bias.
- Exploit the DINO information in long term.



Leverage Depth Priors

Frame 𝑖

𝐃𝐞𝐩𝐭𝐡	𝐌𝐚𝐩	𝐢
𝐃𝐞𝐩𝐭𝐡	𝐌𝐚𝐩	𝐣

𝐃𝐞𝐩𝐭𝐡	𝐌𝐚𝐩	𝐤
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RAFT#% DINOv2%&

𝑝#

𝑥#

𝑥%
𝑥&

𝑝% 𝑝&

...

Canonical Space



Ours: Locality of the Deformation Network

Baseline: a large MLP + linear affine deform each layer
Ours: Local-feature & small MLP + nonlinear deform



Ours: Long Term Supervise from foundational features
Optical flow: dense, but “cut” by occlusion

Long term info: global coarse feature matching

❌Flow: Fail

Feature Match:
Success

PCA vis of 
features



Ours: Long Term Supervise from foundational features



CoTracker: trajectory disagree with optical flow on texture-less points

CoTracker Ours

CoTracker: Fail in texture-less area



CoTracker: Fail in texture-less area
CoTracker: trajectory disagree with optical flow on texture-less points

CoTracker Ours

0                500                50

0                   150 0.                                         150

disagreement disagreement



Result



Result: Performance



Result: Robustness

Comparison of convergence robustness

Example of convergence and divergence

Ours: robust

Omnimotion: prone to fail



Summary

● Lift 2D video to 3D scene
● Locality & Non-linear deformation
● Long-term DinoV2 correspondence

● Low GPU memory consumption (Omnimotion: >10G, Ours: 3G on DAVIS)
● Fast
● Robust
● Performance gain (better than Omnimotion, comparable with feed-

forward methods)



Limits

● Scene-Sensitive (Optimization-based)
● No semantic similarity constraint
● Fitting time increases with video length
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