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Human Brain is a Prediction Machine

Neuroscienc%_

News.com

Your Brain Is a Prediction Machine That Is Always Aclive
. August 4, 2022

Summary: The brain constantly acts as a prediction machine, continuously comparing

sensory information with internal predictions.

Source: Max Planck Institute *

e , , . o . Computer Science Topics  Archive
Thisis in line with a recent theory on how our brain works: it is a prediction machine,

which continuously compares sensory information that we pick up (such as images, !

sounds and language) with internal predictions.

IEN

To Be Energy Efficient, Brains Predict
Their Perceptions
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Introduction

Generative Al

Make the
"orediction”
of the real
world Inside a
computer.




Success of Generative Al
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Generative Models for
Text, Image, Video, 3D,

and Multimodal
Generation

Prompt Question: Whatis the cog carrying?
Model Generation: SLick

Prompt: Describe the given image in very fine dezail.

Madel Generation: In this image, thers s a dag helding a stick inits mouth. T

the surface, Inthe backeorounc of the imace, thers are trees.

nare s grass on



Generative Al has huge impacts
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Expectation of Generative Al

Prior to manipulating objects, a
robot can execute a generative
‘ model as a simulator to anticipate

potential outcomes.

-

The prediction must be :
~and be
generated In real-time.

However, existing generative models
cannot reach this bar.
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What are the Challenges?



Introduction

Formulation

X ~ P(X|C)

Generator

Context



Not Scale Well

Existing models do not scale well for high-dimension data:

Not only slow to generate but also inefficient to train.

Cost

Quality

small images large images short videos long videos

scale of data dimensions



Not Scale Well

High-dimensional data contains useful structures that can greatly
Improve scalability. However, they are not studied adequately.

Hierarchical structures Semantic structures



Research Goal

Bulld Future Generative Models

Scalable

o Efficient Learning on High-dim data



We live in a 3D world.
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Image and video are 2D representations of a 3D world.




No World Knowledge

Existing models ignore the underlying world knowledge, e.g.,
3D projective geometry.




Research Goal

Bulld Future Generative Models

Scalable

Knowleclgeable
o Better generalization with world knowledge






Brief Introduction of Diffusion Models

Forward Diffusion Process

Data Noise

q(x¢xi-1) = N(x¢: \/1 — Bix¢-1, 51) = Sample: Xt = \/1 — Bixi—1 + V/ Pi€r—1
where, €t—1 7~ N(0,I)
mean variance

t
Define, i = H(l — ) = q(x¢|x0) = N (x4 Varxg, (1 — a3)I)) (Diffusion Kernel)

s=1

For sampling: x¢ = /ot X9 + /(1 —ay) ¢ where € ~N(0,1)




Brief Introduction of Diffusion Models

Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that ¢(x7) ~ N (x7;0,1I))
Diffused Data Distributions

Generation:

Sample x7 ~ N (x7;0,1)

X
lteratively sample X;_1 ~ q(X¢—1|x¢) t % -
! I & X -
True Denoising Dist.
q(xo) q(x1) q(x;) q(x3) q(x)
"_ ~ K~ K K K
A(Xo | X1) q(xy|x,) q(x;|%;) A(X3 | X,) A(Xr1 | X7)

In general, ¢(x;_1|x;) o< g(x¢_1)q(x¢|x¢—1) is intractable.

Can we approximate ¢(Xs_1|x;)? Yes, we can use a Gaussian distribution if 3is small in each forward diffusion step.



Brief Introduction of Diffusion Models

Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

<€

Data Noise

n(x7) =N(x7:0.1
pixr) x7;0, ) = pp(xor) = pxp) | [ polxe—1lx:)
po(xi—1|x¢) = N(xp—1: pg(x¢, 1), o71) .

Trainable network
(U-net, Denoising Autoencoder)



Brief Introduction of Diffusion Models

Learning Denoising Model

Variational upper bound

For training, we can form variational upper bound that is commonly used for training variational autoencoders:

‘ Po(Xo:1)
(l(xl:'l"x())

Sohl-Dickstein et al. ICML 2015 and Ho et al. NeurlPS 2020 show that:

L =E, | Dku(q(xr[xo)||p(x7))+ Y ~ Dxrlq(xe—1[x:, %0)||pa(xi—1[x:)) — log pa(xolx1))

}'A‘r f .-’l / 4 ] l,||

where q(X;_1|X¢, X()is the tractable posterior distribution:

q(x¢—1 ‘Xr- Xq) = «'/\"’(Xr—l ; /71(,3(1- X0), ~';r1,)~

TRy V31— 05:(1—au_1) 1 —ay_q .

o t - W& B




Brief Introduction of Diffusion Models

Parameterizing the Denoising Model

Since both ¢(X;_1|X¢. X() and pg(X¢—1|X¢)are Normal distributions, the KL divergence has a simple form:

V2
20

Hﬂf(xr-xn) — ol X¢, f)Hz 1-

Li—1 = Dxp(q(Xi-1|X¢, Xo)||po(X¢-1%¢)) = E, [

Recall that x;y = Vo X + \/(1 — (vt) € . Ho et al. NeurlPS 2020 observe that:

-, 1 [3¢
(X, Xp) = X; — €

They propose to represent the mean of the denoising model using a noise-prediction network:

| (3
(X;.1) = — | X; — X;. 1)

With this parameterization

32

f HF—F()(\/(Tf x“*MF.”r’] e

207(1 — B)(1 — &)

I,; 1 = -tx(‘."-¢/ix..).c “AN(0.1) [

X/



Brief Introduction of Diffusion Models

Reverse Diffusion Process

Lsimple = Exgmglxg).cmN (0.1).0~04(1.7) [HF —ep(v oy X+ V1 — oy €, f)HZ}
\ 5 )

Xt
Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent €g (Xt, t)

Algorithm 2 Sampling

Time Representation 1: xr ~N(0,I)
o ected 2: fort=1T,...,1do
3: z~ N(0.I)
4: X411 = \/t—t (xt = —qu—__(t,,t €9 (x¢, t)) + oz
5: end for
6: return x;




Brief Introduction of Diffusion Models

Diffusion Transformers
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Flexible Generation

Brief Introduction of Diffusion Models

Content-Detail Tradeoff

Reverse denoising process (generative)

Data

The denoising model is The denoising model is
specialized for generating the specialized for generating the

high-frequency content (i.e., low-frequency content (i.e.,
low-level details) coarse content)

The weighting of the training objective for different timesteps is important!

Noise

23



Brief Introduction of Diffusion Models

Classifier guidance

Using the gradient of a trained classifier as guidance

Applying Bayes rule to obtain conditional score function th log d¢ (xt/y)

p(y | z) - p(z)
p(y)

p(z|y) =

—> logp(z | y) = logp(y | ) + log p(z) — logp(y)
— V:logp(z |y) = V. logp(y | z) + V. logp(z),

V:logp,(z | y) = Vilogp(z) + vV logp(y | ). «— Classifier

N\

Guidance scale: value >1 amplifies the
influence of classifier signal.

py(z |y) xp(z)-p(y | z).



Brief Introduction of Diffusion Models

Classifier guidance

Using the gradient of a trained classifier as guidance

V:logp,(z | y) = Vi1ogp(z) + vV, logp(y | z).

- !
Sy

Samples from an unconditional diffusion model with classifier guidance, for guidance scales 1.0 (left) and
10.0 (right), taken from Dhariwal & Nichol (2021).



Brief Introduction of Diffusion Models

Classifier-free guidance

Get guidance by Bayes’ rule on conditional diffusion models

p(z |y)-p(y)
p(z)

p(y| )=

— logp(y | z) = logp(z | y) + logp(y) — log p(x)

—>| Vzlogp(y | z) = V;logp(z | y) — V;logp(z).

We proved this in V. 10gp7(58 | y) =V, logp(:c) + YV, logp(y ‘ IE)

classifier guidance.

V.logp,(z | y) = Vilogp(z) + v (Velogp(z | y) — Ve logp(z)),

Vi.logpy(z |y) = (1 —v)Velogp(x) + vV logp(z | v).

T T

Score function Score function

for unconditional for conditional
diffusion model diffusion model



Brief Introduction of Diffusion Models

Classifier-free guidance

Get guidance by Bayes’ rule on conditional diffusion models

Vi logpy(z | y) = (1 =) Vs logp(z) + vV logp(z | y).

This is a barycentric combination of the conditional and the unconditional score function.
For v = 0, we recover the unconditional model, and for vy =1 we get the standard T T
conditional model. But v > 1 is where the magic happens. Below are some examples from Score function for Score function for
OpenAl’s GLIDE model®, obtained using classifier-free guidance. unconditional conditional diffusio
diffusion model model
In practice

e = (1 +w)eg(ws,y) — weg(xs)

.
N

=
-

\I
b v 7,
\’_/4'

Two sets of samples from OpenAl's GLIDE model, for the prompt ‘A stained glass window of a panda eating
bamboo.', taken from their paper. Guidance scale 1 (no guidance) on the left, guidance scale 3 on the right.



O
Brief Introduction of Diffusion Models

Latent-space diffusion models

Variational autoencoder + score-based prior

) Latent Space Forward Diffusion p(21)

Encoder

0
===

_— O
===

Reconst, — <m— . —
p(x|zop) Decoder KL(g(zg|x)||p(zg))  Latent Space Generative Denoising

\ y

Variational Autoencoder Denoising Diffusion Prior



Brief Introduction of Diffusion Models
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Brief Introduction of Diffusion Models

In pixels'dance, Al's craft will rise,
Transforming visions through machine eyes!
From dreams to screens, new worlds unfurled.
Al's brush reshapes our visual world!
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Scaling to High-dimensional Data

Scalable Learning

outputs = generate_image(prompt= "a poodle si
custom_to_pil(outputs["denoised_images"][0]

Inferencing 1 examples for 1 times.
Keys in output: dict_keys(['denoised_in
Done, time spent 16.29 seconds.

512x512

on Is difficult:
Juality.
clency.

32



Pyramid Representations

Fig.2a. The Gaussian pyra
repeatedly hitered and subsa
of reduced resolution imagt
set of lowpass-filtered copie
the bandwidth decreases in

Fig.4a. The Laplacian pyramid. Each level of this band-
pass pyramid represents the difference between suc-
cessive levels of the Gaussian pyramid.

E.H. Andelson and C.H. Anderson and J.R. Bergen and P.J. Burt and J.M. Ogden.
“Pyramid methods in image processing”. 1984.




Scalable Learning

Cascaded Diffusion Models

(1) Slow Inference process

32x32

Class ID = 213 .
“Irish Setter” -
o >
Model 1 gi2:

Input Tex: Prompt - TS-XXL (£.6B)

g 3 a 0 )
SSR (1.2E) ‘ ‘ ‘ TSR (1.7 |
32¢320x7 92 6lps ¢ Gd 32x40x24 6[[.b f ZH
| cCoa | !
0 5 ISH (530M) . SSR (340M)
61%320 492 1 128x320%192 247ps ) 128x1280x768 24fps

Ho, Jonathan, et al. "Cascaded diffusion models for high fidelity image generation.”
The Journal of Machine Learning Research 23.1 (2022): 2249-2281.



Scalable Learning

Cascaded Diffusion Models

Can we leverage the multi-scale °
Information in a single generative ]
201

model?

128x128 256x256

35



Learning process with latents

Late ntS Qts, . lncornﬁr.. P

Context ~=="  Data
Sharing computation



Scalable Learning

Sharing Multi-scale Computations

Standard diffusion architecture contains multi-scale computation.

NAR Generator

37



Diffusion via Transformation (f-DM)

Gu, J., Zhai, S., Zhang, Y., Bautista, M. A., & Susskind, J.,
“f-DM: A Multi-stage Diffusion Model via Progressive Signal Transformation,” ICLR 2023



Diffusion via Transformation (f-DM)

, Zhai, S., Zhang, Y., Bautista, M. A., & Susskind, J.,
“f-DM: A Multi-stage Diffusion Model via Progressive Signal Transformation,” ICLR 2023



Comparison to Cascaded Models

Scalable Learning

Cascaded lefusmn N

128x128

256x256

Gu, J., Zhai, S., Zhang, Y., Bautista, M. A., & Susskind, J.,
“f-DM: A Multi-stage Diffusion Model via Progressive Signal Transformation,” ICLR 2023

40



Scalable Learning

Progress of Generation

—--..

\ g
\ ~§

4

o
Predicted “difference”

Diffusion Latents

from the target.

Fig.4a. The Laplacian pyramid. Each level of this band-
pass pyramid represents the difference between suc-
cessive levels of the Gaussian pyramid.

Gu, J., Zhai, S., Zhang, Y., Bautista, M. A., & Susskind, J.,
“f-DM: A Multi-stage Diffusion Model via Progressive Signal Transformation,” ICLR 2023



Potential Issues

Scalable Learning

Diffusion in low-res Diffusion in mid-res

N ——————”

Non-trivial to determine the best schedule
for each stage

Gu, J., Zhai, S., Zhang, Y., Bautista, M. A., & Susskind, J.,
“f-DM: A Multi-stage Diffusion Model via Progressive Signal Transformation,” ICLR 2023

42



o O
Matryoshka Diffusion (MDM) Scalable Learning

We make diffusion happen at both low and high resolutions.
NOTE: Noise schedule can be different

lefusmn N Iow res

Fg2 The Gaussian pyramid. The g lmg G
p edlym ed nd subsampled to generate the seque
ed ed resolution fmage G, (,‘ etc The mp
e lowpas ! ! ed copies of the original image h
the ba dwdhd ses in one ocra eps

Diffusion in hih—re Noise function

Gu, J., Zhali, S., Zhang, Y., Susskind, J. & Jaitly, N., “Matryoshka Diffusion Models,” ICLR 2024

43



Matryoshka Diffusion (MDM)

Multi-scale inputs Multi-scale targets

642 — (642,256%) — (642,256%,1024%)
\—\/-_/

Progressive Training

Gu, J., Zhali, S., Zhang, Y., Susskind, J. & Jaitly, N., “Matryoshka Diffusion Models,” ICLR 2024



Progress of Generation

Scalable Learning

256Xx256

Gu, J., Zhai, S., Zhang, Y., Susskind, J. & Jaitly,

., ‘Matryoshka Diffusion Models,” ICLR 2024

1024x1024

45



Multi-scale Scales Better Than Single-scale

Comparison of Learning Efficiency

29
24.25
D
O . .
3 195 Incorporating a multi-
% scale structure learns
- diffusion much more
/ — Ours(MDM) efficiently than baseline.
— Baseline (Diffusion Model)
10 ¢

O 50 100 150 200 250 300 350

Training iterations (K)

, Zhai, S., Zhang, Y., Susskind, J. & Jaitly, N., “Matryoshka Diffusion Models,” ICLR 2024



Multi-scale Scales Better Than Single-scale

Scalable Learning

outputs = generate_image(prompt= "a poodle sitting on grass.",
custom_to_pil(outputs["denoised_images"][0])

Inferencing 1 examples for 1 times.
Keys in output: dict_keys(['denoised_images'])
Done, time spent 16.29 seconds.

Single-scale (512x512)

Ours (512x512)

47



(v
Results

MDM & is the first single model at 1024px for text-to-image generation. Only 12M data.

A green sign that says
‘“MDM” and is at the
edge of the Grand
Canyon
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A traditional Chinese garden in Cinematic photo of a fluffy koala with knitted hat holding a large cup of latte, a colorful artwork of Batman wearing sunglasses |
summer, oil paining by Claude close up, studio lighting, 4k romantic wall graffiti, close-up | dark pink and
Monet yellow | street murals



Also works for Video Generation

Diffusion in first-frame image

Diffusion in all frames

Gu, J., Zhali, S., Zhang, Y., Susskind, J. & Jaitly, N., “Matryoshka Diffusion Models,” ICLR 2024



Scalable Learning

The Diversity Problem

Diversity of generation is variable and controlling the content can be difficult

Standard diffusion model

(" )

A cat sat on > Diffusion Model >
the mat . )

Diffusion models, while adept at generating high-quality images from text, often
produce limited visual diversity

Gu, J., Zhali, S., Zhang, Y., Susskind, J. & Jaitly, N., “Matryoshka Diffusion Models,” ICLR 2024

50



Why standard diffusion models fail?

Diffusion models use Classifier-free Guidance (CFG) to
Improve the generation:

Tg(xs,c) =7 (To(xt,c) — To(Tt)) + Ty (X4)

V. logpglx|c) =y [ log- logp@(x))] + V, log py(x)

B ¢ O ¢ ORI
=M ¥ E W 3 e 3

a2 021w O ok 2
i PRl PRI (A




Kaleido Diffusion

Explicitly model "mode selection” before applying diffusion steps

Z ~ P2 | ¢)

XNﬁH(X ‘ Z,C)

- Diffusion with CFG:

V,log py(x| c,2) = 7 | V, (logpy(x| ) + IORPUGIRE) — log py(x)) | + V., log py(



Kaleido-Diffusion Models

Adding autoregressive latent variables to improve controllability and diversity

Kaleido diffusion model

4 R
A cat sat on
> Diffusion Model >
the mat 5 )
A
\ 4
P N 4 ™
: Latent tokens (e.qg.,
Autoregressive :
: > captions, box, seg,
Model (Prior) )
g y L visual tokens)

Gu, J., Zhali, S., Zhang, Y., Jaitly, N., & Susskind, J.,
“Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling,” Arxiv 2024



Generating the Posteriors of Latents

Use other models [ data to generate discrete latents from the images

' Latent Extractors ' . . .
(e.g. MLLMs)

discrete latents

, Zhai, S., Zhang, Y., Jaitly, N., & Susskind, J.,
“Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling,” Arxiv 2024



Generating the Posteriors of Latents

Can use a set of Pretrained models to generate a variety of descriptors

Object Textual Descriptions
blobs

A person in a blue sweater and jeans is sitting on the floor on
top of a gray couch with their laptop in their lap. They have a
yellow Labrador Retriever in their lap, who is looking at the

camera. The dog has its tongue out and is lying down on the
ey | person’s lap...
Detection
bounding — Visual Tokens
apLl
boxes

1 13 4 / e+ 9

-

Caption: Dog Lying on a human'’s lap

, Zhai, S., Zhang, Y., Jaitly, N., & Susskind, J.,
“Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling,” Arxiv 2024



Autoregressive and Diffusion Joint Training

Can use a set of Pretrained models to generate a variety of descriptors

Discrete latents

< /S>

]

CA :
Context Encoder b Autoregressive Model
(e.g., T5-decoder)

S

1

Concat

P

Diffusion Model
(e.g., MDM)

Panda eating
Pizza

Gu, J., Zhali, S., Zhang, Y., Jaitly, N., & Susskind, J.,
“Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling,” Arxiv 2024



Much More Diverse Generations

“Siberian husky” (Class to Image Generation)

Kaleido-diffusion



Much More Diverse Generations

“A bald eagle made of chocolate powder, mango, and whipped cream” (Text to image generation)

| i

baseline Kaleido-diffusion



Quantitative Results

- Kaleido consistently enhances the diversity of samples without
compromising their quality across different CFG

—e— Baseline /. 0.6 =\ —e— Baseline
\' ours

ours
a . I
™ 0.4 \

2 4 6 2 4 6
Guidance weight Guidance weight



Latent Editing

Input: “A photo of a frog drinking coffee”

In the image a frog is seen sipping on a cup of
coffee, seemingly enjoying a relaxing break. The frog

Is positioned on a log with its eyes closed and a

small smile on its face, as if it's savoring the flavor of

the coffee. The cup of coffee is placed on a rock 9
next to the frog, and the background features a body

of water. The frog's green and yellow coloration

stands out against the natural setting, making for a

&harming and whimsical scene.

Latents generated Image generated by diffusion



Latent Editing

Input: “A photo of a frog drinking coffee”

In the image a frog is seen sipping on a cup of
coffee, seemingly enjoying a relaxing break. The frog

Is positioned on a log with its eyes closed and a

small smile on its face, as if it's savoring the flavor of

the coffee. The cup of coffee is placed on a rock 9
next to the frog, and the background features a body

of water. The frog's green and yellow coloration

stands out against the natural setting, making for a

&harming and whimsical scene.

Latents generated Image generated by diffusion



Latent Editing

Input: “A photo of a frog drinking coffee”

In the image a frog is seen sipping on a cup of
coffee, seemingly enjoying a relaxing break. The frog
Is positioned on cobblestones with its eyes closed
and a small smile on its face, as if it's savoring the
flavor of the coffee. The cup of coffee is placed on a
rock next to the frog, and the background features
forest. The frog's green and yellow coloration stands
out against the natural setting, making for a
&harming and whimsical scene.
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Edited Latents Image regenerated by diffusion



Latent Editing

Input: “A photo of a frog drinking coffee”

In the image a frog is seen sipping on a cup of
coffee, seemingly enjoying a relaxing break. The frog
Is positioned on cobblestones with its eyes closed
and a small smile on its face, as if it's savoring the
flavor of the coffee. The cup of coffee is placed on a
rock next to the frog, and the background features
forest. The frog's green and yellow coloration stands
out against the natural setting, making for a
charming and whimsical scene.

Edited Latents Image regenerated by diffusion



Scalable Learning

Is Diffusion the best answer?
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Transformer

Ive

Autoregress

ising

Deno

Non-Markovian DART

Markovian Diffusion Model

Autoregressive Transformer

ising

Denol

Gu, J., Wang, Y., Zhang, Y., Zhang, Q., Zhang, D., Jaitly, N., Susskind, J., Zhai, S. “DART.

for Scalable Text-to-Image Generation”, Arxiv 2024



Denoising Autoregressive Transformer

Generated Image

Output Module

------- 1_-_----‘XN

“Golden Retriever” .
FFN Block with SWiGLU <+

'

|
a a o . l
Context Denoising Auto-Regressive e Cross-(gt;gggg;; gk |
Encoder Transformer (DART) |
Self-attention Block :
with KV Cache :
| e
——————— 1_—-'—'_—-JModulation
Input Module OpE)

Gu, J., Wang, Y., Zhang, Y., Zhang, Q., Zhang, D., Jaitly, N., Susskind, J., Zhai, S. “DART: Denoising Autoregressive Transformer
for Scalable Text-to-Image Generation”, Arxiv 2024



Denoising Autoregressive Transformer

, Wang, Y., Zhang, Y., Zhang, Q., Zhang, D., Jaitly, N., Susskind, J., Zhai, S. “DART: Denoising Autoregressive Transformer
for Scalable Text-to-Image Generation”, Arxiv 2024



Denoising Autoregressive Transformer

A puppy looking at the camera </s>
F 141 F FfF 1
DART (Text-Image Joint Modeling)

L LN S 4
<s> A puppy looking at the camera £
next token prediction : v

next image denoising

Input: a golden retriever.

A golden retriever puppy sits next
to a carved pumpkin, looking at
the camera. The pumpkin has a
face carved into it, and the puppy
has a red collar with a tag. The
background is white, and the
lighting is bright. The composition
is centered around the puppy and
the pumpkin, with the puppy

A golden retriever is swimming in
a pool, smiling brightly. The water
Is clear and blue, and the dog is
wearing a red cross necklace. The =
background is out of focus, but |

there is a person visible inthe |
distance. The lighting is bright and
sunny, creating a cheerful

atmosphere. </s>

A golden retriever wearing a red
bandana sits in a field of red
‘ flowers </s>

taking up a larger portion of the
frame. The overall scene is a cute
and festive Pebble scene, perfect
for Halloween. </s>

) e

Gu, J., Wang, Y., Zhang, Y., Zhang, Q., Zhang, D., Jaitly, N., Susskind, J., Zhai, S. “DART: Denoising Autoregressive Transformer

for Scalable Text-to-Image Generation”, Arxiv 2024



Takeaway

-~ We can enhance learning scalability from
high-dimensional data by using hierarchical
and discrete structures to model the latents.

Latents

4 Generator

Context




Knowleclgeable



Why Need World Knowledge?

World Knowledge Modeling

Can SOTA Generative Models learn 3D?

viewpoint condition

71



Issues with Pure 2D Models

Results of 2D diffusion models:

-’L "'—1-; ;"—.:_ I‘.. - d 4
el |
o= -_‘, ‘
—yy ' L

Context Output Context Output

Watson, Daniel, et al. "Novel view synthesis with diffusion models." ICLR 2023.



World Knowledge Modeling

Issues with Pure 2D Models

1. Randomness In each view:

= -
i

Need multi-view
datasets:

Not generalize to
unseen views

Diffusion at
view 2




. O @@
learn through large amounts of video data.

“Rumacrs foct im a sncabers close up “Female cop talking on walkictalice, “Billiards, conentrated young woman
realiste three damensicaal animation . rcaponding cancrgency calll, crime playimg i elub”
prevention™

— SORA

“Loody beastifal woman sittng on “Kherson, ukaine - 20 may 201% open, “Cabeza de tore, punta cana/ dom nican

the teat looking outsade. wind om the froe, rock muiic festival crowd partying republic - feb 20, 2020; 4k drone Night
hair aod camnping om the beach near at a rock concert. hands up, peogle, fans over cordl roef with manta®

the cdlors of water and syore cheering clapring applanding in kherson,

froedom and alternative tiny house ukraine - 20 nay 2016. band poeforming™

for traveler lady drinking™

Large scale Pure 2D/video network
video dataset

Drawback:
(a) Data/resource hungry

(b) No 3D guarantee.




Failure cases (again)




Explicit World Knowledge Modeling

Wovlt\l . nArvas lAAAA I G'I'Qh'l'o

Context Data



How natural images are created

World Knowledge Modeling

Camera

_ ——
l' lf \
S -y
— ] R
|

v

Camera

Computer Graphics Neural Rendering from 3D Latents
Imy Camera vV
\\_‘ﬂew Ray
" > X
Data

[

: _ / S 3D Latents Neural

: . ,  OCeNe Renderer

[ [

: ' ' neural fields
ur / .

v v \ 4 Joxels noiny  volume rendering,
clouds,

meshes, etc
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3D-aware Generative Models

World Knowledge Modeling

Camera V

3D Latents Neural
Renderer

C (ontext)

A model grounded in 3D can generalize to
new views freely without much training.

78



World Knowledge Modeling

Reconstruction from Images

Neural rendering from 3D Latents, gradient back-propagate to
update 3D latents

Ground-truth
Multi-view
Images

Camera

grad/ents grad/en ts

3D Latents
Neural
Renderer

79



How to Generate 3D Latents?

World Knowledge Modeling

Camera V

—> Generator

Context
3D Latents Neural

I Renderer

2D Images

.' ‘

’ ,
y'

: '

[ ;)

: 3

| 2D Images f

, “pseudo-multi-view

ground-truth”

80



Distilling Latents from 2D Diffusion!

World Knowledge Modeling

3D-aware
Diffusion at V44
one view

X N Views

Novel views

Gu, J., Trevithick, A., Lin, K. E., Susskind, J. M., Theobalt, C., Liu, L., & Ramamoorthi, R.,
“NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from 3D-aware Diffusion,” ICML 2023

[ Distillation

| Using denoised views

as the rendering

| target to fine-tune the

3D latents

Guidance

Using the rendered
Image to guide the

. multi-view diffusion to |

move into next step

81



o
Comparison

2D only With 3D 2D only With 3D

-~

B

\ N 3 ™~

Gu, J., Trevithick, A., Lin, K. E., Susskind, J. M., Theobalt, C., Liu, L., & Ramamoorthi, R.,
“NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from 3D-aware Diffusion,” ICML 2023



Comparison
ShapeNet Cars ShapeNet Chairs Amazon-Berkeley Objects
PSNR+t SSIMT LPIPS, FID| PSNRt SSIM+t LPIPS| FID] PSNR?t SSIM+* LPIPS| FID|
LFN (Sitzmann et al., 2021)" 2242 0.89 — - 2226 0.90 = - — — — —
3DiM (Watson et al., 2022)* 21.01 0.57 - 899 1705 0.53 = 6.57 — — - —
SRN (Sitzmann et al., 2019a) 2225 088 0.129 41.21 2289 089 0.104 2651 - — — —
PixelNeRF (Yu et al., 2021) 23.17 089 0.146 59.24 2372 090 0.128 3849 - — - —
CodeNeRF (Jang & Agapito, 2021) 22.73 0.89 0.128 — 23.39 0.87 0.166 — — — — —
FE-NVS (Guo et al., 2022) 2283 091 0.099 - 2321 092 0077 - - — — —
VisionNeRF (Lin et al., 2023) 22.88 090 0.084 21.31 2448 092 0.077 10.05 28.61 093 0.095 33.38
NerfDiff-B (Ours) 23.51 092 0.082 18.09 2479 094 0.056 5.65 3281 096 0.057 7.77
v/o NGD R )G 1.093 ¢ / NG N.06S [ N.G N.06 R (0

NerfDiff-L. (Ours) 23.76
w/o NGD 23.95

, Trevithick, A., Lin, K. E., Susskind, J. M., Theobalt, C., Liu, L., & Ramamoorthi, R.,
“NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from 3D-aware Diffusion,” ICML 2023



How to learn?

World Knowledge Modeling

@ Approach I: Distillation from 2D Model

—> Generator

Context

N

Camera V

3D Latents

@ Approach lI: Direct 3D Generation

Latents

Context

. PR 2 7SN
: \ . X -y " Ao ﬁ
) S PN
B o '
¢ i

Neural
Renderer

Generator

Latents

Camera V

Data
3D Latents Neural

Renderer
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© O O
Direct 3D GANs

This Is the first time a generative model can synthesize high-resolution
Images from novel views while preserving high 3D consistency!

Our synthesized results (512x512)

Gu, J., Liu, L., Wang, P., & Theobalt, C.,
“Stylenerf: A style-based 3d-aware generator for high-resolution image synthesis,” ICLR 2022



© O O
Direct 3D Diffusion

For each scene, we will simultaneously run 3D latents reconstruction and
generative model learning on the optimized latents.

rl—__—_’—-——__——--_ - e oy e N, et L, T R e, e YN S e s

o | position 3 i
! Diffusion Prior py(x) | » € R3 ot { NeRF Decoder p,, ({y }| {,j]) " i: scene index
,' | 272k AT : j: ray (pixel) index
I . . . ' ™ ~ SH encoding R6% \
: Gaussian diffusion | I direction = | ' ) .
\ ® = gy + g® | derd  Lnear color | !
I 2 \ Linear, Sigmoid | ¢ € R} '
| , scene3cc6>d§8 LN I
e T X6X128%12 : : _
I P € R B e S > | U | density | !
I i Sl = i Ty X vz xz Linear R6* Linear, Exp | p€ Ry | |
I ,, NoISy code i i position feat. = I o I
| &35 (O 3X6X128x128 ! R3%6 I
4 x; €ER ;
: e ‘ \l : Ray integral y, ( X;, fl’t) ,
\ i U-Net i 1 I
1 . . ' :
l Denoising : . .
: II ?» denoised code ‘ pixel RGB observation
Y . ~ 2 l . 3 gt 3
I 1 Yd) ( - ) = ]R3><6X128><148 \ \ yU - IR+ yl] = IR+
f , i
I timestep t (
———————————— - e P R e o o s o ™™ - ~ — TS T o e S, e

Chen, H., Gu, J., Chen, A., Tian, W., Tu, Z., Liu, L., & Su,
“Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and Reconstruction,” ICCV 2023



O
Progress of Generation

o ©

World Knowledge Modeling

&

Latents are hard to obtain; therefore,
difficult to Scale up...

Chen, H., Gu, J., Chen, A., Tian, W., Tu, Z., Liu, L., & Su,
“Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and Reconstruction,” ICCV 2023

&

'
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Takeaway

- Learning 3D latents allows for free-view
synthesis in generative models.

Latents

World knowledge
(e.g. 3D)

Context



To Summarize Combine latents to design

non-autoregressive generative
models for flexible text
generation.

| atents

Integrate data structures into
latent for high-resolution
Image and video synthesis.

Context Data

Scalable

Knowleclgeable

Model 3D knowledge as 3D
latents in generative models
for free-view synthesis.







of NAR for LLMs

Can we design more flexible large language models? For instance,

apply NAR to fast generation and editing.

——

a N\
/
7 Original Model
[ LM Head J—
A
Last Hidden
- N\
Transformer
Layers
\ 1‘ y,
[ Embedding ]
\ A
\_ 4
4 )
# Input

G

What will happen if
Medusa meets a llama”?

_

X Top-k Predictions

Block-wise Non-
autoregressive
Generation

c

(- - Candidates

.

It is difficult not
It' difficult a X
Itis' not ) ...

\

@ R

/ Single step prediction
3! It is difficult

o J




e
Scalable Learning: Unifying LLMs with Diffusion Models o

“Golden Retriever”

-1 s \ E ‘
.7\1-". - ..' 4 ) SeSCh 4 V
,: " .':.f - ~~: '.‘ Y ’ ,‘f‘v\_ .rﬂ ‘ ‘ :

Generated Image

N
1 _
ﬁDART — N E :wn”fé’(mlzn—l) — wan
n=1

Work in progress (to be submitted to ICLR 2025) 92



o0 0 0
Scalable Learning: Unifying LLMs with Diffusion Models o

Generated Image

Golden retriever </a>

' :

<g> Draw an image of dog </g> . B . | Y 1 o <g> What's the breed?</q>  <a> Golden retriever

Work in progress o
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Physics-informed Generative Al

Can we Incorporate more physics world knowledge?

’

State-of-the-art Video Generation
(OpenAl Sora)
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Physics-informed Generative Al

Can we take inspiration from 3D latents so far?

Camera V
Image
Camgra /
T
| View Ray
D Z - - X
Data

3D Latents Neural
Renderer

Physics P
simulator °
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Generative Al for Embodied Al

Can we learn , scalable, and knowledgeable generative
models directly from large-scale ego-centric video data?

EGRI)

Asia/Africa Europ_e i S./N. America

Latents

: % pocs .
y—_— I E Y |
. - 3
‘ \ . . i ~ | \‘.‘\::.
—— 2 _ .~ = d
- .

Walking

Cooking

Generator

Shopping

Social interaction




- - -
Generative Al for Applications

We can deploy such generative models for wider applications. For
Instance, creating high-quality and controllable synthetic training
datasets.

Self-driving Robotics Medical Imaging



A sample of 1024x1024 Generation from “Matryoshka Diffusion Models”, ICLR 2024

TM and © 2024 Apple Inc. All rights reserved.
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