Internal use only–do not distribute.

Towards *Scalable* **and** Knowledgeable **Generative Intelligence**

Jiatao Gu Machine Learning Researcher Apple

Human Brain is a Prediction Machine

Your Brain Is a Prediction Machine That Is Always Active

· August 4, 2022 Neuroscience Featured

Summary: The brain constantly acts as a prediction machine, continuously comparing sensory information with internal predictions.

Source: Max Planck Institute

This is in line with a recent theory on how our brain works: it is a prediction machine, which continuously compares sensory information that we pick up (such as images, sounds and language) with internal predictions.

To Be Energy-Efficient, Brains Predict **Their Perceptions**

Results from neural networks support the idea that brains are "prediction $machines''$ — and that they work that way to conserve energy.

Make the "prediction" of the real world inside a computer.

Success of Generative AI

4

Prompt Question: What is the dog carrying?

Model Generation: Stick

Prompt: Describe the given image in very fine detail.

Model Generation: In this image, there is a dog holding a stick in its mouth. There is grass on the surface. In the background of the image, there are trees.

Introduction

Robotics Biomedicine AI Agents

Generative AI has huge impacts

Education Entertainment

Healthcare

Expectation of Generative AI

The prediction must be detailed, adhere to physical laws, and be generated in real-time.

However, existing generative models cannot reach this bar.

What are the Challenges?

Formulation

Existing models do not scale well for high-dimension data: Not only slow to generate but also inefficient to train.

scale of data dimensions

Cost

10

High-dimensional data contains useful structures that can greatly improve scalability. However, they are not studied adequately.

Hierarchical structures Temantic structures

11

Build Future Generative Models

Scalable

Efficient Learning on High-dim data

We live in a 3D world.

12

Image and video are 2D representations of a **3D world**.

No World Knowledge

Existing models ignore the underlying world knowledge, e.g., 3D projective geometry.

14

Build Future Generative Models

Scalable

Better generalization with world knowledge Knowledgeable

Forward Diffusion Process

Noise

Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that $q(\mathbf{x}_T) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

Generation:

Sample $\mathbf{x}_T \sim \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

Iteratively sample $\mathbf{x}_{t-1} \sim q(\mathbf{x}_{t-1}|\mathbf{x}_t)$

True Denoising Dist.

In general, $q(\mathbf{x}_{t-1}|\mathbf{x}_t) \propto q(\mathbf{x}_{t-1})q(\mathbf{x}_t|\mathbf{x}_{t-1})$ is intractable.

Diffused Data Distributions

Can we approximate $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$? Yes, we can use a Gaussian distribution if β_t is small in each forward diffusion step.

Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Data

Noise

Learning Denoising Model Variational upper bound

For training, we can form variational upper bound that is commonly used for training variational autoencoders:

$$
\mathbb{E}_{q(\mathbf{x}_0)}\left[-\log p_\theta(\mathbf{x}_0)\right] \leq \mathbb{E}_{q(\mathbf{x}_0)q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\left[-\log \frac{p_\theta(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\right] =: L
$$

Sohl-Dickstein et al. ICML 2015 and Ho et al. NeurIPS 2020 show that:

$$
L = \mathbb{E}_q \left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_T|\mathbf{x}_0)||p(\mathbf{x}_T))}_{L_T} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)||p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t))}_{L_{t-1}} - \underbrace{\log p_\theta(\mathbf{x}_0|\mathbf{x}_1))}_{L_0} \right]
$$

where $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ is the tractable posterior distribution:

T

$$
q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \mathbf{I}),
$$

where $\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) := \frac{\sqrt{\bar{\alpha}_{t-1}} \beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 + \frac{\sqrt{1 - \beta_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t$ and $\tilde{\beta}_t := \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$

Parameterizing the Denoising Model

Since both $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ and $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$ are Normal distributions, the KL divergence has a simple form:

 $L_{t-1} = D_{\text{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)||p)$

Recall that
$$
\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{(1 - \bar{\alpha}_t)} \epsilon
$$
. Ho et al. NeurlPS 2020 observe

$$
\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{1}{\sqrt{1 - \beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon \right)
$$

They propose to represent the mean of the denoising model using a noise-prediction network:

$$
\mu_{\theta}(\mathbf{x}_t, t) = \frac{1}{\sqrt{1 - \beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(\mathbf{x}_t, t) \right)
$$

With this parameterization

$$
L_{t-1} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\frac{\beta_t^2}{2\sigma_t^2 (1 - \beta_t)(1 - \bar{\alpha}_t)} ||\epsilon - \epsilon_\theta(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) ||^2 \right] + C
$$

$$
\mathbf{x}_t
$$

$$
p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)) = \mathbb{E}_q \left[\frac{1}{2\sigma_t^2} ||\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) - \mu_{\theta}(\mathbf{x}_t, t)||^2 \right] + C
$$

that:

Reverse Diffusion Process $L_{\text{simple}} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(0, \mathbf{I}), t \sim \mathcal{U}(1, T)} \left[||\epsilon - \epsilon_{\theta}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t)||^2 \right]$ \mathbf{x}_t Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent $\epsilon_\theta(\mathbf{x}_t, t)$ $\cdots \bullet \epsilon_{\theta}(\mathbf{x}_t, t)$ **Algorithm 2 Sampling** 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2: for $t = T, ..., 1$ do 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return x_0

DiT Block with Cross-Attention DiT Block with In-Context Conditioning

Brief Introduction of Diffusion Models

Diffusion Transformers

Latent Diffusion Transformer

DiT Block with adaLN-Zero

Content-Detail Tradeoff

Reverse denoising process (generative)

Data

 x_1

 x_0

The denoising model is specialized for generating the high-frequency content (i.e., low-level details)

The weighting of the training objective for different timesteps is important!

Classifier guidance

$$
p(x \mid y) = \frac{p(y \mid x)}{p(y)}
$$

$$
\implies \log p(x \mid y) = \log p(y \mid x) + \\
$$

$$
\implies \nabla_x \log p(x \mid y) = \nabla_x \log p(y
$$

$$
\nabla_x \log p_{\gamma}(x \mid y) = \nabla_x \log p(x) + \gamma \nabla_x \log p(y \mid x).
$$

$$
\longleftarrow
$$

$$
\bigcap_{\text{Guidance scale: value >1 amplifies the}}
$$

influence of classifier signal.

$$
p_\gamma(x \mid y) \propto p(x) \cdot p(y
$$

Using the gradient of a trained classifier as guidance

Applying Bayes rule to obtain conditional score function $\nabla_{x_t} log\ q_t(x_t/y)$

$$
p(x)
$$

$$
\Big|
$$

- $\log p(x) \log p(y)$
- $y | x) + \nabla_x \log p(x),$

 $y\mid x)^{\gamma}.$

Classifier guidance

Using the gradient of a trained classifier as guidance

Samples from an unconditional diffusion model with classifier guidance, for guidance scales 1.0 (left) and 10.0 (right), taken from Dhariwal & Nichol (2021).

 $\nabla_x \log p_{\gamma}(x \mid y) = \nabla_x \log p(x) + \gamma \nabla_x \log p(y \mid x).$

Classifier-free guidance

Get guidance by Bayes' rule on conditional diffusion models

$$
p(y \mid x) = \frac{p(x \mid y) \cdot p(y)}{p(x)} \\ \implies \log p(y \mid x) = \log p(x \mid y) + \log p(y) - \log p(x) \\ \implies \boxed{\nabla_x \log p(y \mid x) = \nabla_x \log p(x \mid y) - \nabla_x \log p(x).} \\ \nabla_x \log p_\gamma(x \mid y) = \nabla_x \log p(x) + \gamma \nabla_x \log p(y \mid x).
$$

We proved this in classifier guidance.

$$
\nabla_x \log p_\gamma(x \mid y) = \nabla_x \log p(x) + \gamma \left(\nabla_x \log p(x \mid y) - \nabla_x \log p(x) \right),
$$

 $\nabla_x \log p_\gamma(x \mid y) =$

$$
(1 - \gamma) \nabla_x \log p(x) + \gamma \nabla_x \log p(x \mid y).
$$

Score function
for unconditional
diffusion model
diffusion mode

Classifier-free guidance

Get guidance by Bayes' rule on conditional diffusion models

This is a barycentric combination of the conditional and the und For $\gamma = 0$, we recover the unconditional model, and for $\gamma =$ conditional model. But $\gamma > 1$ is where the magic happens. Below are some examples from OpenAl's GLIDE model⁸, obtained using classifier-free guidance.

Two sets of samples from OpenAI's GLIDE model, for the prompt 'A stained glass window of a panda eating bamboo.', taken from their paper. Guidance scale 1 (no guidance) on the left, guidance scale 3 on the right. **Flexible Generation**

$$
\nabla_x \log p_{\gamma}(x \mid y) = (1 - \gamma) \nabla_x \log p(x) + \gamma \nabla_x \log p(x \mid y).
$$

conditional score function.
= 1 we get the standard

Score function for unconditional diffusion model

Score function for conditional diffusio model

In practice

 $\hat{\epsilon} = (1 + \omega)\epsilon_{\theta}(x_t, y) - \omega \epsilon_{\theta}(x_t)$

Latent-space diffusion models Variational autoencoder + score-based prior

Flexible Generation

Brief Introduction of Diffusion Models

Flexible Generation

Brief Introduction of Diffusion Models

Scaling to High-dimensional Data

outputs = generate_image(prompt= "a poodle sitting
custom_to_pil(outputs["denoised_images"][0])

Inferencing 1 examples for 1 times. Keys in output: dict_keys(['denoised_images']) Done, time spent 16.29 seconds.

512x512

Scalable Learning

Data

Pyramid Representations

Fig. 2a. The Gaussian pyra repeatedly filtered and subsa of reduced resolution image set of lowpass-filtered copie the bandwidth decreases in

33

E.H. Andelson and C.H. Anderson and J.R. Bergen and P.J. Burt and J.M. Ogden. "Pyramid methods in image processing". 1984.

Cascaded Diffusion Models

34

Ho, Jonathan, et al. "Cascaded diffusion models for high fidelity image generation." The Journal of Machine Learning Research 23.1 (2022): 2249-2281.

(1) SIOW INTERNICE PROCESS (1) Slow inference process

Scalable Learning

Cascaded Diffusion Models

information in a ci Can we leverage the multi-scale information in a single generative model?

16x16 32x32 64x64 128x128 256x256

Learning process with latents

Latents Incorporate structures to improvement of the structures to improve the structure of the structure of the structure of the s
and the structure of the

Context

\overrightarrow{h} greatly improve learning efficiency. Predict these structures while sharing computations with the final prediction. This can

Sharing Multi-scale Computations

37

Standard diffusion architecture contains multi-scale computation.

NAR Generator

Diffusion via Transformation (f-DM)

38

Gu, J., Zhai, S., Zhang, Y., Bautista, M. A., & Susskind, J., "f-DM: A Multi-stage Diffusion Model via Progressive Signal Transformation," ICLR 2023

Diffusion via Transformation (f-DM)

Gu, J., Zhai, S., Zhang, Y., Bautista, M. A., & Susskind, J., "f-DM: A Multi-stage Diffusion Model via Progressive Signal Transformation," ICLR 2023

Comparison to Cascaded Models

Gu, J., Zhai, S., Zhang, Y., Bautista, M. A., & Susskind, J., "f-DM: A Multi-stage Diffusion Model via Progressive Signal Transformation," ICLR 2023

16x16

Cascaded Diffusion

f-DM (Ours)

32x32

64x64

128x128

128x128

256x256

256x256

Progress of Generation

Gu, J., Zhai, S., Zhang, Y., Bautista, M. A., & Susskind, J., "f-DM: A Multi-stage Diffusion Model via Progressive Signal Transformation," ICLR 2023

42

Gu, J., Zhai, S., Zhang, Y., Bautista, M. A., & Susskind, J., "f-DM: A Multi-stage Diffusion Model via Progressive Signal Transformation," ICLR 2023

for each stage

Matryoshka Diffusion (MDM)

Gu, J., Zhai, S., Zhang, Y., Susskind, J. & Jaitly, N., "Matryoshka Diffusion Models," ICLR 2024

We make diffusion happen at both low and high resolutions.

Diffusion in high-res

Diffusion in low-res

NOTE: Noise schedule can be different

Matryoshka Diffusion (MDM)

Progress of Generation

Multi-scale Scales Better Than Single-scale

 \vert outputs = generate_image(prompt= "a poodle sitting on grass.", custom_to_pil(outputs["denoised_images"][0])

Inferencing 1 examples for 1 times. Keys in output: dict_keys(['denoised_images']) Done, time spent 16.29 seconds.

Single-scale (512x512) **Canadia Control Contro**

Results

MDM & is the first single model at 1024px for text-to-image generation. Only 12M data.

Cinematic photo of a fluffy koala with knitted hat holding a large cup of latte, close up, studio lighting, 4k

A chromeplated cat sculpture placed on a Persian rug

A traditional Chinese garden in summer, oil paining by Claude Monet

A green sign that says "MDM" and is at the edge of the Grand Canyon

a colorful artwork of Batman wearing sunglasses I romantic wall graffiti, close-up I dark pink and yellow I street murals

Also works for Video Generation

The Diversity Problem

Diversity of generation is variable and controlling the content can be difficult

Diffusion models, while adept at generating high-quality images from text, often produce limited visual diversity

Standard diffusion model

Why standard diffusion models fail?

Diffusion models use Classifier-free Guidance (CFG) to improve the generation:

$$
\tilde{\boldsymbol{x}}_{\theta}(\boldsymbol{x}_t, \boldsymbol{c}) = \gamma \cdot (\boldsymbol{x}_{\theta}(\boldsymbol{x}_t, \boldsymbol{c}) - \boldsymbol{x}_{\theta}(\boldsymbol{x}_t)) + \boldsymbol{x}_{\theta}(\boldsymbol{x}_t)
$$

 $\nabla_x \log p_\theta(x|c) = \gamma \left[\nabla_x (\log p_\theta(x|c) - \log p_\theta(x)) \right] + \nabla_x \log p_\theta(x)$

γ

Explicitly model "mode selection" before applying diffusion steps

 $Z \sim p_{\theta}(z \mid c)$

$$
x \sim \tilde{p}_{\theta}(x \mid z, c)
$$
 Later

Latent Modeling

nt-augmented Diffusion Models

$$
\nabla_x \log \tilde{p}_{\theta}(x \mid c, z) = \gamma \left[\nabla_x (\log p_{\theta}(x \mid c) + \log p_{\theta}(z \mid x, c) - \log p_{\theta}(x)) \right] + \nabla_x \log p_{\theta}(x)
$$

•Diffusion with CFG:

Kaleido-Diffusion Models

Adding autoregressive latent variables to improve controllability and diversity

Kaleido diffusion model

Generating the Posteriors of Latents

Use other models / data to generate discrete latents from the images

Panda eating pizza

Generating the Posteriors of Latents

Can use a set of Pretrained models to generate a variety of descriptors

 $L = L^{DM} + \eta \cdot L^{AR}$

Autoregressive and Diffusion Joint Training

Can use a set of Pretrained models to generate a variety of descriptors

Stage II: Autoregressive and Diffusion Joint Training

baseline Kaleido-diffusion

Much More Diverse Generations

"Siberian husky" (Class to Image Generation)

57

baseline Kaleido-diffusion

Much More Diverse Generations

"A bald eagle made of chocolate powder, mango, and whipped cream" (Text to image generation)

Quantitative Results

•Kaleido consistently enhances the diversity of samples without compromising their quality across different CFG

Latents generated lmage generated by diffusion

Latent Editing

Input: "A photo of a frog drinking coffee"

In the image a frog is seen sipping on a cup of coffee, seemingly enjoying a relaxing break. The frog is positioned on a log with its eyes closed and a small smile on its face, as if it's savoring the flavor of the coffee. The cup of coffee is placed on a rock next to the frog, and the background features a body of water. The frog's green and yellow coloration stands out against the natural setting, making for a charming and whimsical scene.

Latents generated lmage generated by diffusion

Latent Editing

Input: "A photo of a frog drinking coffee"

Latent Editing

Input: "A photo of a frog drinking coffee"

In the image a frog is seen sipping on a cup of coffee, seemingly enjoying a relaxing break. The frog is positioned on **cobblestones** with its eyes closed and a small smile on its face, as if it's savoring the flavor of the coffee. The cup of coffee is placed on a rock next to the frog, and the background features forest. The frog's green and yellow coloration stands out against the natural setting, making for a charming and whimsical scene.

Edited Latents Image regenerated by diffusion

Latent Editing

Input: "A photo of a frog drinking coffee"

In the image a frog is seen sipping on a cup of coffee, seemingly enjoying a relaxing break. The frog is positioned on cobblestones with its eyes closed and a small smile on its face, as if it's savoring the flavor of the coffee. The cup of coffee is placed on a rock next to the frog, and the background features forest. The frog's green and yellow coloration stands out against the natural setting, making for a charming and whimsical scene.

Edited Latents Image regenerated by diffusion

Is Diffusion the best answer?

?

Non-Markovian DART

Denoising Autoregressive Transformer

Markovian Diffusion Model

Denoising Autoregressive Transformer

Denoising Autoregressive Transformer

67

next image denoising

Denoising Autoregressive Transformer

Input: a golden retriever.

A golden retriever puppy sits next to a carved pumpkin, looking at the camera. The pumpkin has a face carved into it, and the puppy has a red collar with a tag. The background is white, and the lighting is bright. The composition is centered around the puppy and the pumpkin, with the puppy taking up a larger portion of the frame. The overall scene is a cute and festive Pebble scene, perfect for Halloween. </s>

A golden retriever wearing a red bandana sits in a field of red flowers \lt /s>

68

69

We can enhance learning scalability from \bigcirc high-dimensional data by using hierarchical and discrete structures to model the latents.

Scalable Knowledgeable

Why Need World Knowledge?

71

Can SOTA Generative Models learn 3D?

viewpoint condition

Issues with Pure 2D Models

72

Results of 2D diffusion models:

Watson, Daniel, et al. "*Novel view synthesis with diffusion models.*" ICLR 2023.

Issues with Pure 2D Models

73

1. Randomness in each view;

Need multi-view *causing* datasets;

Not generalize to unseen views

…
…

World Knowledge Modeling

Implicitly learn through large amounts of video data.

"Runners feet in a sneakers close up realistic three dimensional animation

"Lonely beautiful woman sitting on the test looking outside, wind on the hair and camping on the beach near the colors of water and shore. freedom and alternative tiny house for traveler lady drinking'

"Female cop talking on walkietalkie responding emergency call, crime prevention"

"Kherson, ukraine - 20 may 2015: open, free, rock music festival crowd partving at a rock concert. hands up, people, fans cheering clapping applauding in kherson ukraine - 20 riay 2016. band performing'

playing in elub"

"Cabeza de toro, punta cana/ dominican
republic - feb 20, 2020: 4k drone flight over coral reef with manta'

74

Large scale video dataset

Pure 2D/video network

Drawback:

(a) Data/resource hungry

(b) No 3D guarantee.

Failure cases (again)

75

atonte

Explicit World Knowledge Modeling

76

Context

Data

The external world knowledge acts as an additional constraint to regularize the generative process.

How natural images are created

77

Computer Graphics

Neural Rendering from 3D Latents

3D-aware Generative Models

78

A model grounded in 3D can generalize to new views freely without much training.

C (Context)

Neural rendering from 3D Latents, gradient back-propagate to update 3D latents

Reconstruction from Images

How to Generate 3D Latents?

80

81

Gu, J., Trevithick, A., Lin, K. E., Susskind, J. M., Theobalt, C., Liu, L., & Ramamoorthi, R., "NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from 3D-aware Diffusion," ICML 2023

Comparison

82

Gu, J., Trevithick, A., Lin, K. E., Susskind, J. M., Theobalt, C., Liu, L., & Ramamoorthi, R., "NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from 3D-aware Diffusion," ICML 2023

83

Gu, J., Trevithick, A., Lin, K. E., Susskind, J. M., Theobalt, C., Liu, L., & Ramamoorthi, R., "NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from 3D-aware Diffusion," ICML 2023

How to learn?

84

Approach I: Distillation from 2D Model

Approach II: Direct 3D Generation

Our synthesized results $(512x512)$

Direct 3D GANs

85

Gu, J., Liu, L., Wang, P., & Theobalt, C., "Stylenerf: A style-based 3d-aware generator for high-resolution image synthesis," ICLR 2022

This is the first time a generative model can synthesize high-resolution images from novel views while preserving high 3D consistency!

observation

Direct 3D Diffusion

For each scene, we will simultaneously run 3D latents reconstruction and generative model learning on the optimized latents.

Chen, H., *Gu, J.*, Chen, A., Tian, W., Tu, Z., Liu, L., & Su, "Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and Reconstruction," ICCV 2023

Progress of Generation

87

Chen, H., *Gu, J.*, Chen, A., Tian, W., Tu, Z., Liu, L., & Su, "Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and Reconstruction," ICCV 2023

Latents are hard to obtain; therefore, difficult to Scale up…

Can we find better 3D representation?

88

Learning 3D latents allows for free-view \bigcirc synthesis in generative models.

Knowledgeable

non-autoregressive generative models for flexible text generation.

Integrate data structures into latent for high-resolution image and video synthesis.

Model 3D knowledge as 3D latents in generative models for free-view synthesis.

89

Flexibility of NAR for LLMs

91

Can we design more flexible large language models? For instance, apply NAR to fast generation and editing.

Scalable Learning: Unifying LLMs with Diffusion Models

$$
\mathcal{L}^{\text{DART}} = \frac{1}{N}\sum_{n=1}^N \omega_n \|f_\theta(\boldsymbol{x}_{1:n-1}) - \bar{\boldsymbol{x}}_n\|_2^2
$$

Work in progress (to be submitted to ICLR 2025) 92

Scalable Learning: Unifying LLMs with Diffusion Models

Work in progress and the state of the st

Physics-informed Generative AI

94

Can we incorporate more physics world knowledge?

State-of-the-art Video Generation (OpenAI Sora)

?

Physics-informed Generative AI

95

Can we take inspiration from 3D latents so far?

Generative AI for Embodied AI

Can we learn flexible, scalable, and knowledgeable generative models directly from large-scale ego-centric video data?

Generative AI for Applications

We can deploy such generative models for wider applications. For instance, creating high-quality and controllable synthetic training

Self-driving Robotics Medical Imaging

datasets.

TM and © 2024 Apple Inc. All rights reserved.

A sample of 1024x1024 Generation from "*Matryoshka Diffusion Models*", ICLR 2024

