Generalization of Neural Fields (Overview)

Motivation: Novel View Synthesis

Motivation: Novel View Synthesis

DeepVoxels, CVPR 2018.

NeRF, ECCV 2021

IDR, ECCV 2021

Plenoxels, CVPR 2022

Inferring Neural Fields

If only a <u>single observation</u> is available, or if only <u>part of the scene</u> has been observed, <u>Inference</u> needs to be prior-based – i.e., we need to <u>learn to reconstruct.</u>

General Framework: Encoder-Decoder

What are the latent variables?

How to predict latent variables from observations?

How do we decode latent variables into the Neural Field?

What are the latent variables?

Key Consideration: Locality.

Global Conditioning

Discrete Data Structure

Local Conditioning

Global Latent Codes

Discrete Data Structure

Neural Fields in Visual Computing and Beyond, Xie et al., EG STAR 2022

Global Conditioning

Global Conditioning

¹[Schmidhuber et al. 1992, Schmidhuber et al. 1993, Stanley et al. 2009, Ha et al., 2016]

Global Latent Codes:

Enables reconstruction from *partial* observations!

Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations, NeurIPS 2019.

Global Latent Codes:

Enables reconstruction from partial observations!

Key limitation: Simple, non-compositional scenes. But: Latent Space for full objects (interpolation etc.)

Differential Volumetric Rendering, Niemeyer et al., CVPR 2020

Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations, NeurIPS 2019.

Local Latent Codes

Global Conditioning

Discrete Data Structure

Local Conditioning

Neural Fields in Visual Computing and Beyond, Xie et al., EG STAR 2022

PiFU, Saito et al., ICCV 2019. PixelNeRF, Yu et al., CVPR 2021

Grf: Learning a general radiance field..., Trevithick et al. ICCV 2021

Vision Transformer for NeRF-Based View Synthesis from a Single Input Image, Lin et al. 3DV 2022 MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo, Chen et al. ICCV 2021 Neural Rays for Occlusion-aware Image-based Rendering, Liu et al. CVPR 2022

. . .

Neural Rays for Occlusion-aware Image-based Rendering, Liu et al. CVPR 2022

Neural Rays for Occlusion-aware Image-based Rendering, Liu et al. CVPR 2022

PiFU, Saito et al., ICCV 2019. PixelNeRF, Yu et al., CVPR 2021

Grf: Learning a general radiance field…, Trevithick et al. ICCV 2021 Vision Transformer for NeRF-Based View Synthesis from a Single Input Image, Lin et al. 3DV 2022 MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo, Chen et al. ICCV 2021 Neural Rays for Occlusion-aware Image-based Rendering, Liu et al. CVPR 2022

20

Object-centric representations

uORF, ICLR 2022

CoLF: Unsupervised Learning of Compositional Object Light Fields, arXiv 2022.

How to infer latent codes?

Encoding vs. Auto-Decoding

Latent Codes

Auto-Decoding

Encoding

Note that, this is not to generalize to new objects, but generalize to different time frame of a dynamic scene

Neural Volumes, Lombodi et al., SIGGRAPH 2019

Encoding

Auto-Decoding for inverse graphics

Sitzmann et al: Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations, NeurIPS 2020.

Auto-Decoding for inverse graphics

Sitzmann et al: Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations, NeurIPS 2020.

Acknowledgments

- Vincent Sitzmann
- Neural Fields in Visual Computing and Beyond (Tutorial)
- Advances in Neural Rendering (Tutorial)
- awesome-NeRF: a curated list of awesome neural radiance fields papers
- MPII Summer Semester 2023: Computer Vision and Machine Learning for Computer Graphics
- Neural Volumetric Rendering for Computer Vision (Tutorial)