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We Live in a World that is 3D and Contains Dynamics
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We Digitize Our World in 3D
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Future Al: Towards 3D Aware

Lingjie Liu



. & Penn
3D Reconstruction of Real-world Scenes

Motion
+ Deformation

Geometry
+ Appearance
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Photo-realistic Rendering

= Image Synthesis of Real-world Scenes with 3D Control.
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Applications
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Autonomous Driving Robot Grasping Human-robot Interaction
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Why are they challenging?



Problem formulation & Penn

Captured images —> Processing —> Rendering of real-world place

[Mildenhall et al., Neural Radiance Fields (NeRF), ECCV 2020]
[Wu et al., Scalable Neural Indoor Scene Rendering, SIGGRAPH 2022]

Lingjie Liu



Classical Computer Graphics Pipeline

3D Reconstruction
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Computer Graphics Rendering
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Image-based 3D Reconstruction

COLMAP [Johannes et al. 2016, Schoenberger et al. 2016]
(Input: 100 images)
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Challenges in Image-based Reconstruction

Hard to extract reliable
correspondences!
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Computer Graphics Rendering

Rendering requires very high-quality 3D models
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Neural Scene Representation and Neural Rendering
To the rescue
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Neural Scene Representation and Neural Rendering

Scene
Representation

3D Recx\ - ' >Sy. Image Loss C
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Neural Scene Representation and Neural Rendering
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EUROGRAPHICS 2020 Volume 39 (2020), Number 2
R. Mantiuk and V. Sundstedt STAR - State of The Art Report
(Guest Editors)

This state of the art repe

i accepted at EUROGRAPHICS 2022.

State of the Art on Neural Rendering Advances in Neural Rendering

A, Tewari'®* J. Thi
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" “his stat-of the-art report discuses a arge variey of neural rendering methods which cnable applications such as novel-view
synthesis of static and dynamic scenes, generative modeling of objects, and scene relighting. See Section 4 for more details on the various
methods. Images adapted from [MST*20, TY20,CMK*21,ZSD*21, BBJ*21, LSS"21,PSB"21,1XX"21, PDW*21] ©2021 IEEE.

Figure 1: Neural renderings of a large variety of scenes. See Section 6 for more details on the various methods. Images from [SBT* 19,SZWIS,
XBS* 19, KHMI7,GLD" 19, MBPY* I8, XSHRIS, MGK* 19, FTZ* 19, LXZ* 19, WSS" 19,

Abstract

Efcient rendering of photo- rmhmr virtal worlds is a long standin effortof compuer sraphics. Modern graphics technigues
have succeeded in stic images from h scene jowever, the automatic gen-
eration of shape, materials, llghnng, and other aspects of scenes remains a challenging problem that, if solved, would make
photo-rea ion and machine learning
have given rise 10 a new approach 1o image synthesis and editing, namely deep generative models. Neural rendering is a
new and rapidly emerging field that combines generative machine learning techniques with physical knowledge from computer
graphics, e.g., by the integration of differentiable rendering into network training. With a plethora of applications in computer
graphics and vision, neural rendering is poised to become a new area in the graphics community, yet no survey of this emerg-
ing field exists. This state-of-the-art report summarizes the recent trends and applications of neural rendering. We focus on
approaches that combine classic computer graphics techniques with deep generative models to obiain controllable and photo-
realistic outputs. Starting with an overview of the underlying computer graphics and machine learning concepts, we discuss
eritical aspects of neural rendering approaches. Specifically, our emphasis is on the type of control, i.e., how the control is
provided, which parts of the pipeline are learned, explicit vs. implicit control, generalization, and stochastic vs. deterministic
synthesis. The second half of this state-of-the-art report is focused on the many important use cases for the described algorithms

Abstract

Synthesizing photo-realistic images and videos is at the heart of computer graphics and has been the focus of decades of
research. Traditionally, synthetic images of a scene are generated using rendering algorithms such as rasterization or ray
tracing, which take specifically defined representations of geometry and material properties as input. Collectively, these inputs
define the actual scene and what is rendered, and are referred 10 as the scene representation (where a scene consists of one
or more objects). Example scene representations are triangle meshes with accompanied textures (.., created by an artist),
point clouds (e.g., from a depth sensor), volumetric grids (e.g.. from a CT scan), or implicit surface functions (e.g.. truncated
signed distance fields). The ion of such a scene ion from obs using iable rendering
losses is known as inverse graphics or inverse rendering. Neural rendering is closely related, and combines ideas from class
computer graphics and machine learning 10 create algorithms for synthesizing images from real-world observations. Neural
rendering is a leap forward towards the goal of synthesizing photo-realistic image and video content. In recent years, we have
seen immense progress in this field through hundreds of publications that show different ways to inject learnable components
into the rendering pipeline. This state-of-the-art report on advances in neural rendering focuses on methods that combine

istic computer graphics more widely accessible. Concurrently, progress in computer vi

cal

arXiv:2111.05849v2 [cs.GR] 30 Mar 2022

classical rendering principles wih learned 3D scene representations, ofen now refrred to as euralscene represeniations. A
such as novel view synthesis, semantic photo Jacial and body reenactment, relighting. video, and key advantage of these methods is that they are 3D- by design, enabling vel viewpoint synthes,
the creation of ph listic avatars for virtual reality telepresence. Finally, we conclude with a discussion of of a captured \u‘nt In addition to methods that humlh.' static scenes, we cover neural scene n:[wwnmmm/nr ‘modeling non-
the social implications of such technology and investigate open research problems. rigidly i scene editi ition. While most of 7

techniques that gwn’mh‘c across object classes and can be used for generative tasks. In diion 10 i ing these state-of-
the-art methods, we provide an overview of fundamental concepts and definitions used in the current literature. We conclude
with a discussion on open challenges and social implications.

1. Introduction tlenecks is content creation, ic.. that a vast amount of tedious

and expensive manual work of skilled artists is required for the

The creation of photo-realistic imagery of virtual worlds has been  creation of the underlying scene representations in terms of sur-

one of the primary driving forces for the development of so-
phisticated computer graphics techniques. Computer graphics ap-
proaches span the range from real-time rendering, which enables
the latest generation of computer games, to sophisticated global
illumination simulation for the creation of photo-realistic digi
tal humans in feature films. In both cases, one of the main bot-
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face geometry, appearance/material, light sources, and animations.
Concurrently, powerful generative models have emerged in the
computer vision and machine learning communities. The semi-
nal work on Generative Adversarial Neural Networks (GANs) by
Goodfellow et al. [GPAM"14] has evolved in recent years into

[Tewari et al. 2020]

1. Introduction

Synthesis of controllable and photo-realistic images and videos is
one of the fundamental goals of computer graphics. During the
last decades, methods and representations have been developed

to mimic the image formation model of real cameras, including
the handling of complex materials and global illumination. These
methods are based on the laws of physics and simulate the light
transport from light sources to the virtual camera for synthesis. To
this end, all physical parameters of the scene have to be known for

[Tewari et al. 2021]

Lingjie Liu



& Penn
Neural Rendering - Definition

e Definition:

"Deep neural networks for image or video generation
that enable explicit or implicit control
of scene properties”

3)

Illumination, camera, pose,

2)

Controllable by
interpretable parameters geometry, appearance, or

semantic structure controllable

or by video/audio input.

Lingjie Liu
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Generative Query Network (GQN)

Observation 1

B Neural scene
representation

r

Rendering steps

ol h, — —| b,

v

Predicted
view

Observation 2 Observation 3 Representation network f Generation network g

Neural scene representation and rendering, Eslami et al. 2018
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Generative Query Network (GQN)

neural rendering

observation

Neural scene representation and rendering, Eslami et al. 2018
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Generative Query Network (GQN)

neural rendering

observation

Neural scene representation and rendering, Eslami et al. 2018
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Generative Query Network (GQN)

observations
ground truth neural rendering map

pep

Neural scene representation and rendering, Eslami et al. 2018

Lingjie Liu
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Neural Rendering Zoo

o 7 2D
Regress it Code e.g., GQN
. e T T g

3D Mesh

"Make it more real” CG 2D Encoder 72D Decoder e.g., DVP or DNR

(3D to 2D)

Lingjie Liu
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Deep Video Portraits (DVP)

Expression

Eyes
Identity

\\
Monocular face
reconstruction

P

Rendering-to-video
translation network

Training video

Deep Video Portraits, Kim et al. 2018

Lingjie Liu



Deep Video Portraits (DVP)

Face reenactment

User interaction

Expression

Eyes

Identity

Modified face
parameters

P

Modified rendering
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Deep Video Portraits, Kim et al. 2018
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Neural Rendering Zoo

“Regress it”

2D
e |20
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e.g., GQN

"Make it more real”

3D Mesh

2D Encoder I 2D Decoder

(3Dt02D

e.g., DVP or DNR

“Regress & render”

3D Mesh + 2D Texture

Code CG
(3D to 2D)
3D ®

Vqume

e.g., Neural Volumes

Lingjie Liu
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Neural Volumes

Encoder '/, | Decoder

Reconstruction ' Ta rget Imag

Input Multi-view Video

Neural Volumes: Learning Dynamic Renderable Volumes from Images, Lombardi et al. 2019

31 Lingjie Liu
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Neural Volumes
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Neural Volumes
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Neural Rendering Zoo

2D
e |20

“Regress it”
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e.g., GQN

"Make it more real”

3D Mesh

(3Dt02D

2D Encoder I 2D Decoder

e.g., DVP or DNR

“Regress & render”

3D Mesh + 2D Texture

Code CG
(3D to 2D)
3D ®

Vqume

e.g., Neural Volumes

”Step, sample & blend”

v

Coordinates CG
S (3D to 2D)
pace

e.g., NeRF

Lingjie Liu
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Neural Radiance Fields (NeRF)

Scene
L2 loss
2
‘Xr o Xg t ‘ 2
(p' U) // \
X \ X
MLPs Rendered Image Ground Truth Image

[Mildenhall et al. 2020]
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[Mildenhall et al. 2020]
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Neural Rendering Zoo

2D
e |20

“Regress it”
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e.g., GQN

"Make it more real”

3D Mesh

(3Dt02D

2D Encoder I 2D Decoder

e.g., DVP or DNR

“Regress & render”

3D Mesh + 2D Texture

Code CG
(3D to 2D)
3D ®

Vqume

e.g., Neural Volumes

”Step, sample & blend”

N

Coordinates CG
S (3D to 2D)
pace

e.g., NeRF

Lingjie Liu




Overview
7
Scene 4
Representation p
Voxelgrids
Renderer Volumetric

Implicit Function

Sphere-Tracing
Volumetric

3K |9k 1/
s

Hybrid
Implicit/Explicit

Volumetric
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(We’ll talk more about other
representations in our next class)

Both Scene Representation and Differentiable Renderer often

adapted from traditional computer graphics.

Lingjie Liu



Requirements
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Scene 4
Representation P
Voxelgrids
Renderer _
Volumetric
Pros
Cons

Implicit Function

Sphere-Tracing
Volumetric

3K |98 1/
s

Hybrid
Implicit/Explicit

Volumetric
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Voxel-based methods

DeepVoxels Neural Volumes HoloGAN

Sitzmann et al., CVPR 2018 Lombardi et al.,, SIGGRAPH 2019 Phuoc et al,, ICCV 2019

Lingjie Liu
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Voxel-based methods
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o

~ Trilinear Interpolation

7
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Requirements
e e
Scene 4
Representation P
Voxelgrids
Renderer Volumetric
Fast rendering
Pros
Memory O(nd)
Limited spatial
Cons resolution

M«A

1, \"/ \ X
YOOI
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Implicit Function

Sphere-Tracing
Volumetric

3K |98 1/
s

Hybrid
Implicit/Explicit

Volumetric
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Requirements
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Scene d
Representation p
Voxelgrids
Renderer Volumetric
Pros Fast rendering
Memory O(nd)
Cons Limited spatial

resolution
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Sphere-Tracing
Volumetric
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Neural Implicit Approaches

o

Scene Representation Networks Differentiable Volumetric Rendering NeRF Implicit Differentiable Renderer
Generalizes across scenes Generalizes across scenes Single-scene Single-scene
Sitzmann et al., NeurIPS 2019 Niemeyer et al.,, CVPR 2020 Mildenhall et al., ECCV 2020 Yariv et al., NeurIPS 2020

Oopg %

ar
Near

Sphere tracing Volumetric

... .. 10
Lingjie Liu



Sphere Tracing & Penn
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[Source: Takikawa et al] Lingjie Liu



Sphere Tracing & Penn

[Source: Takikawa et al] Lingjie Liu



Sphere Tracing & Penn

[Source: Takikawa et al] Lingjie Liu



Sphere Tracing & Penn

[Source: Takikawa et al] Lingjie Liu



Sphere Tracing & Penn

[Source: Takikawa et al] Lingjie Liu



Sphere Tracing & Penn

[Source: Takikawa et al] Lingjie Liu



Sphere Tracing & Penn

[Source: Takikawa et al] Lingjie Liu



Sphere Tracing & Penn

[Source: Takikawa et al] Lingjie Liu



Sphere Tracing & Penn

[Source: Takikawa et al] Lingjie Liu



Sphere Tracing & Penn

[Source: Takikawa et al] Lingjie Liu



Sphere Tracing & Penn

[Source: Takikawa et al] Lingjie Liu



Sphere Tracing #Penn

Yay we found the surface!

[Source: Takikawa et al] Lingjie Liu



Sphere Tracing denn

Yay we found the surface!

[Source: Takikawa et al] Lingjie Liu
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Neural Implicit Approaches

o

Scene Representation Networks Differentiable Volumetric Rendering NeRF Implicit Differentiable Renderer
Generalizes across scenes Generalizes across scenes Single-scene Single-scene
Sitzmann et al., NeurIPS 2019 Niemeyer et al.,, CVPR 2020 Mildenhall et al., ECCV 2020 Yariv et al., NeurIPS 2020

Oopg %

ar
Near
Sphere tracing Volumetric
* Faster  Higher Quality
e Fewer network evaluations * Easy convergence
« Convergence more difficult  Very expensive 0

Lingjie Liu



Requirements
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Representation P
Voxelgrids
Renderer Volumetric
Pros Fast rendering

Memory O(nd)
Cons Limited spatial
resolution
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Implicit Function

Sphere-Tracing
Volumetric

High quality
Compact
Admits global priors

Extremely expensive,
slow rendering
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Volumetric
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Requirements
7
Scene 4
Representation p
Voxelgrids
Renderer Volumetric
Pros Fast rendering

Memory O(nd)
Cons Limited spatial
resolution
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Implicit Function

Sphere-Tracing
Volumetric

High quality
Compact
Admits global priors
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slow rendering
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Volumetric
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Hybrid Implicit / Explicit

Wine Holder

SRN (Sitzmann et al. 2019)
(Rendering speed: 1.10 s/frame) (Rendering speed: 1.68 s/frame)

Neural Sparse Voxel Fields,
Liu et. al.,, NeurlIPS 2020

'./fl-,‘ $ & ¢ S e
U
£ 5 Ea 77y £y n

3 1

PiFU, Saito et al.,, ICCV 2019
GRF, Trevithick et al., arXiv 2020
pixeINeRF, Yu et. al.,, CVPR 2021
MVSNerf, Chen et al., arXiv 2021
Learn local (image patch-based) priors

(M g% 4 08
.
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, T
Unconstrained Scene Generation with

Locally Conditioned Radiance Fields,
DeVries et al., arXiv 2021

Lingjie Liu
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Neural Sparse Voxel Fields (NSVF)

= Avoid sampling points in empty space as much as possible.
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lllustration of Sparse Voxels lllustration of a voxel-bounded neural field

Neural Sparse Voxel Fields, Liu et al. 2020

64 Lingjie Liu



&Penn
Neural Sparse Voxel Fields (NSVF)

= Avoid sampling points in empty space as much as possible.

Sample in the whole space Only sample inside the sparse-voxels

65 Lingjie Liu
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Comparison

NeRF (Mildenhall et al. 2020) Ours (NSVFE)
(Rendering speed: 100 s/frame) (Rendering speed: 2.62 s/frame)

66 Lingjie Liu



Requirements
7
Scene d
Representation p
Voxelgrids
Renderer Volumetric
Pros Fast rendering
Memory O(nd)
Cons Limited spatial

resolution
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Implicit Function

Sphere-Tracing
Volumetric

High quality
Compact
Admits global priors

Extremely expensive,

slow rendering

3K |98 1/
s

Hybrid
Implicit/Explicit

Volumetric

Significant Speedup
Admits local priors

No compact
representation
No global priors
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Neural Scene Representation and Neural Rendering



Neura

Scene
Representation

Renderer

Pros

Cons

Voxelgrids

Volumetric

Fast rendering

Memory O(n3)
Limited spatial
resolution

Implicit Function

Sphere-Tracing
Volumetric

High quality
Compact
Admits global priors

Extremely expensive,
slow rendering

Hybrid
Implicit/Explicit

Volumetric

Significant Speedup
Admits local priors

No compact
representation
No global priors
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EUROGRAPHICS 2022 Volume 41 (2022), Number 2
D. Meneveaux and G. Patand STAR - State of The Art Report
(Guest Editors)

Neural Fields in Visual Computing and Beyond

Yiheng Xie'?® Towaki Takikawa®* Shunsuke Saito®® Or Litany*® Shigin Yan' Numair Khan' ® Federico Tombari®’
James Tompkin' & Vincent Sitzmann®' © Srinath Sridhar'!
"Brown University 2Unity Technologies *University of Toronto *NVIDIA *Meta Reality Labs Rescarch ®Google "Technical University of Munich
$Massachusetts Institute of Technology !Equal advising

https://neuralfields.cs.brown.edw/

Part I: Techniques

frRm R

Aschitectures  Manipulation

Part II: Applications

= == =
i
D ¢
2Dand 3D Reconstruction ~ Generative Models Digital Humans - = =
e ! - E h
Compression Rbotics and Beyond! -

Figure 1: Contribution of this report. Following a survey of over 250 papers, we provide a review of (Part I) techniques in neural fields
such as prior learning and conditioning, representations, forward maps, architectures, and manipulation, and of (Part II) applications in
visual computing including 2D image processing, 3D scene reconstruction, generative modeling, digital humans, compression, robotics, and
beyond. This report is complemented by a community-driven website with search, filtering, bibliographic, and visualization features.

Abstract

Recent advances in machine learning have led 10 increased interest in solving visual computing problems using methods that
employ coordinate-based neural networks. These methods, which we call neural fields, parameterize physical properties of
scenes or objects across space and time. They have seen widespread success in problems such as 3D shape and image syn-
thesis, animation of human bodies, 3D reconsiruction, and pose estimation. Rapid progress has led o numerous papers, but
a consolidation of the discovered knowledge has not yet emerged. We provide context, mathematical grounding, and a review
of over 250 papers in the literature on neural fields. In Part 1, we focus on neural field techniques by identifying common
components of neural field methods, including different forward map, and manip-
ulation methods. In Part II, we focus on applications of neural fields o different problems in visual computing, and beyond
(e.g., robotics, audio). Our review shows the breadih of topics already covered in visual computing, both historically and in
current incarnations, and highlights the improved quality, flexibility, and capability brought by neural field methods. Finally,
Wwe present a companion website that acts as a living database that can be continually updated by the community.

CCS Concepts

« Computing methodologies — Machine Learning; Artificial Intelligence;

Lingjie Liu
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Definition of Fields Pe

A field is a quantity defined for all
spatial and / or temporal coordinates.

Lingjie LiL7O



Examples of Fields

[Source: Wikipedia]

Vector Field

Fields

Lingjie Liu



Examples of Fields

Image Vector Field

[Source: Wikipedia] Lingjie Liu



Examples of Fields

3D Parabola Image Vector Field
(Explicit Surface)

Fields

[Source: Wikipedia] Lingjie Liu



Examples of Fields

3D Parabola Image Vector Field
(Explicit Surface)

3D Signed Distance Fields
(Implicit Surface)

Fields

[Source: Wikipedia] Lingjie Liu



Examples of Fields

3D Parabola Image Vector Field
(Explicit Surface)

3D Signed Distance Fields
(Implicit Surface)

— Fields

Audio

[Source: Wikipedia] Lingjie Liu



What are neural fields? &Penn

Fields / signals can be represented in many ways.

4

Continuous Discrete Neural

Lingjie Liu



What are neural fields?

(x,y) —_—

v

(x,y) —_—

v

Neural Network ()

Eulerian Flow Field of a Fluid
[Koldora CC]
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What are neural fields? " Pann

+
(lelz) _>
’ S
Signed Distance Function (SDF)
Neural Network (®)
Geospatial Data
78 [Blumenstock et al. 2015]
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Neural Fields General Framework

| Conditioning | | Hybrid |

z
| Spatial ] 1 r
2 4

> X5 i"é W
X y = ORI
LAA

([ Temporal ] t MLP

What we want to
reconstruct:

The bridge:

differentiable renderer
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What we can
measure;

Radiance + Density Field

Signed Distance Field

[ Coordinate Sampling ] [ Neural Network ]

[ Reconstruction Domain ]

Volume Rendering

Ray 1
Ray.2 fcﬁ”
Yo ! x
o By

[ Forward Map ]

RGB Image

Depth Image

-

[ Sensor Domain ]

‘ Optimization via gradient descent '

Lingjie Liu




Differentiable Rendering & Penn

[ Reconstruction ] [ Forward Map ] [ Sensor Domain ]

Radiance Field Volume Rendering

Ray 1
Ray:2 J/C,BX
'9.& o .
o0 a

Z # iy

Normal Depth

e ~\

Scene representation
o:R3- R"

Output Rendering

=) Neural =) —

Renderer

Figures adapted from:

Mildenhall et al. 2020 (NeRF)

Sitzmann et al. 2019 (SRN)
InNgjie Liu
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Course Link:

https://neural-representation-2024.github.io/topics.html
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TAS

Xuyi Meng Chuhao Chen
Email: mengxuyi@seas.upenn.edu Email: morphling233@gmail.com
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Preliminary Syllabus

3-12

13-16

17 — 26
27
28

29

Aug 28 (Wed)

Sept 9 (Mon) — Oct 9 (Wed)
Oct 14 (Mon) — Oct 23 (Wed)
Oct 28 (Mon) — Nov 27 (Wed)
Dec 2 (Mon)

Dec 4 (Wed)

Dec 9 (Mon)

(M g% 4 08
.
UNIVERSITY of PENKSYLVAN 1A

Intro

Intro 2

Paper Presentations (round 1)
Guest Talks

Paper Presentations (round 2)
Practice lecture (e.g., NerfStudio)

Discussion on your favorite papers in Neural
Representation and Neural Rendering (5 mins per
person)

Summary + Brainstorming new ideas

84 Lingjie Liu
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Next Class
1. Present some pioneering works in this field, e.g., NeRF, SRN, Neural Volumes, ...
2. Fundamentals of Classical 3D Representations and Rendering in Computer
Graphics
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Topic and Papers

Fast Inference

BakedSDF: Meshing Neural SDFs for Real-Time View Synthesis

Yariv et al.

SIGGRAPH 2023

3D Gaussian Splatting for Real-Time Radiance Field Rendering
Kerbl et al.
SIGGRAPH 2023 (Best Paper Award)

2D Gaussian Splatting for Geometrically Accurate Radiance Fields
Huang et al.

SIGGRAPH 2024

Fast Training

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Miiller et al.

ACM ToG 2022

TensoRF: Tensorial Radiance Fields
Chen and Xu et al.

ECCV 2022

+ Factor Fields: A Unified Framework for Neural Fields and Beyond
Chen et al.

S5IGGRAPH 2023

Antialiasing

Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields
Barron et al.

ICCV 2021 (Oral, Best Paper Honorable Mention)
+ Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields

Barron et al.
CVPR 2022 (Oral Presentation)

+ Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields
Barron et al.

ICCV 2023 (Oral Presentation, Best Paper Finalist)

Mip-Splatting: Alias-free 3D Gaussian Splatting
Yu et al

CVPR 2024 (Best Student Paper Finalist)

& Penn
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Note: For a paper bundle, you
only need to present one of the
papers in the bundle according
to their preference, but you are
encouraged to discuss the
connections between the
papers in the bundle.
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Large (Unbounded) Scenes

MERF: Memory-Efficient Radiance Fields for Real-time View Synthesis in Unbounded Scenes
Retser et al.

SIGGRAPH 2023

+ SMERF: 5treamable Memory Efficient Radiance Fields for Real-Time Large-5cene Exploration
Duckworth and Hedman et al.

S5IGGRAPH 2024 (Best Paper Honorable Mentian)

Grid-guided Neural Radiance Fields for Large Urban Scenes
Xuetal
CVPR 2023

Generalization

pixelNeRF Neural Radiance Fields from One or Few Images
Yu et al

CVPR 2021

PixelSplat: 3D Gaussian Splats from Image Pairs for Scalable Generalizable 3D Reconstruction
Charatan et al.

CVPR 2024 (Oral)

(infers a 3D Gaussian scene from two input views in a single forward pass.)

LRM: Large Reconstruction Model for Single Image to 3D

Hong et al.

ICLR 2024 (Oral)
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3D Generative Model

[Per-scene optimization: diffusion distillation]

DreamFusion: Text-to-3d using 2D diffusion

Poole et al,

ICLR 2023

+ ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation
Wang et al.

NeurlPS 2023 (Spotlight)

[Single-view image — Multi-view image — 3D reconstruction]
Cat3D: Create Anything in 3D with Multi-View Diffusion Models
Gao et al.

arXiv 2024

InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction
Models

Xu et al.

arxiv 2024

+ LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation

Tang et al.

ECCV 2024 (Oral)

+ One-2-3-45+ +: Fast Single Image to 3D Objects with Consistent Multi-View Generation and 3D
Diffusion

Liu et al.

CVPR 2024

[Pose-free 3D Generation]

PF-LRM: Pose-Free Large Reconstruction Model for Joint Pose and Shape Prediction
Wang et al.

arXiv 2024

+ SpaRP: Fast 3D Object Reconstruction and Pose Estimation from Sparse Views

Xu et al.

ECCV 2024

[Native 3D Generation]

Splatter Image: Ultra-Fast Single-View 3D Reconstruction
Szymanowicz et al.

CVPR 2024

[Multi-view ImageNet]

EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks
Chan et al.

CVPR 2022

3D generation on ImageNet

Skorokhodov et al.

ICLR 2023 (Oral)

& Penn
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Dynamic Scenes & Human

Shape of Motion: 4D Reconstruction from a Single Video

Wang et al.

arXiv 2024

+ MoSca: Dynamic Gaussian Fusion from Casual Videos via 4D Motion Scaffolds
Lietal

arxXiv 2024

K-Planes: Explicit Radiance Fields in Space, Time, and Appearance
Fridovich-Keil et al.
CVPR 2023

4K4D: Real-Time 4D View Synthesis at 4K Resolution
Xu et al.
CVPR 2024

Pose Estimation

COLMAP-Free 3D Gaussian Splatting
Fu et al.
CVPR 2024

Local-to-Global FlowCam: Training Generalizable 3D Radiance Fields without Camera Poses via Pixel-

Aligned Scene Flow
Smith et al.
MNeurlPS 2023

Lighting

TensolR: Tensorial Inverse Rendering
Jin et al.

CVPR 2022

Relightable 3D Gaussian: Real-time Point Cloud Relighting with BRDF Decompesition and Ray Tracing

Zhang et al.
ECCV 2024

Physics Simulation

PhysGaussian: Physics-Integrated 3D Gaussians for Generative Dynamics

Xie et al,

CVPR 2024 (Highlight)

PhysAvatar: Learning the Physics of Dressed 3D Avatars from Visual Observations
Zheng et al.

ECCV 2024

Editing & Multi-modality

Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions

Hague et al.

ICCV 2025 (Oral)

PlatoNeRF: 3D Reconstruction in Plato’s Cave via Single-View Two-Bounce Lidar
Klinghoffer et al.

CVPR 2024 (Cral, Best Paper Award Finalist)

& Penn
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Robotics

LERF: Language Embedded Radiance Fields

Kerr et al,

ICCV 2023 (Oral)

+ LERF-TOGO: Language Embedded Radiance Fields for Zero-5hot Task-Oriented Grasping
Rashid et al.

CORL 2023 (Best Paper Finalist)

Unifying 3D Representation and Control of Diverse Robots with a Single Camera
Lietal
arXiv 2024

Surface Reconstruction

MNeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction
Wang et al.

MNeurlP5 2021

+ Neu52: Fast Learning of Neural Implicit Surfaces for Multi-view Reconstruction

Wang et al.

ICCV 2023

Gaussian Opacity Fields: Efficient and Compact Surface Reconstruction in Unbounded Scenes

Yu et al
arkiv 2024

Differentiable Mesh Extraction

NeurCross: A Self-Supervised Neural Approach for Representing Cross Fields in Quad Mesh Generation
Dang et al

arxiv 2024

Flexible Isosurface Extraction for Gradient-Based Mesh Optimization

Shen et al.

SIGGRAPH 2023

(M g% 4 08
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Before the seminar

Read the papers of the week.

Submit at least two questions for discussion before the seminar to a Google form
(https://docs.google.com/forms/d/e/TFAIpQLSfSxryv JO9Ffbd7iKClgnczgPWJUQgv30
GFI6K-2sAKOJmBYQ/viewform). This is important — your contribution will be marked.

The deadline for submitting questions is one hour before each class session (so
Monday 2:30 PM and Wednesday 2:30 PM).
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During the seminar (Starting from Sept 9, two rounds) & Penn

* Overview (10 minutes)
- The instructor or TAs give a brief introduction on the topic.

« 2x Presentations (each 25 minutes, 25 % of grade):
- Two pre-assigned participants present the paper of their choice.
- 5 minutes on motivation, background and related work.
- 20 minutes of presentation of the paper.

* Discussion and Feedback (30 minutes, 25% of grade across weeks):

- One participant is assigned at random at the beginning of the seminar to lead the
discussion. Everyone leads the discussion at least once in the seminar series.

- The discussion leader receives a digest of the submitted questions just before the seminar.

- The discussion leader raises questions appropriately throughout the discussion, covers
future work aspects, and finally provides a summary of the strengths and weaknesses of the
techniques and of the discipline.

- The students provide feedback to the presenting student on their presentation with
respect to what has worked well, and what could be improved and how.
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Form (30%)
To time? Verbal speed &
clarity? Body posture?
Engagement with audience?

Moderation (30%)
Integrates questions well? Pushes
forward discussion?

Good summary? Strengths and
weaknesses of paper?

Practice Lecture (30%)

Listen attentively to the lecture?
Engage in small coding exercises?

Content (50%)
Structure/storyline? Main
points? Paper connections?
Valid conclusions?

Answers (20%)
Good answers to questions?
Knowledgeable?

Questions (70%)

One question per paper (two
questions per class) should be
submitted at least one hour
before the class during which
the paper will be presented.
(However, students are
permitted to submit questions
late (but before the discussion),
up to two occurrences, without
facing any penalties)

Discussion on your favorite
papers (35%)

Each person has 5 minutes to
present their favorite paper. Is your
presentation clear? Explain clearly
why you chose it and what you like

about it?

Brainstorming (35%)
Actively participate in the
discussion? Contribute your own
(deas or opinions?

2x Presentations
(50% of grade)

Discussion
(25% of grade)

93
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Other Activity Participation
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TODOs After this Class PGDD

1. Paper Selection and Registration: [Important! Deadline: Sept 3]

Please select and register for the two papers you would like to present using the following Excel
link:

https://docs.google.com/spreadsheets/d/1 FlueXgWnKWoYOGZTNiwp2gRmSPOu1H6ayEYES5|31b0/
edit?gid=0#gid=0

2. Presentation Preparation:

* Ensure you are fully prepared one class before your scheduled class for presentation.

 Upload your slides to the Google folder (https://drive.google.com/drive/folders/TNO-
JAWIRtKILGZOMQxCOUso0OA|dtrypY) at least one hour before the class prior to your
assigned class for presentation. This is important in case of an emergency requiring us to
reschedule your talk.

» For example, if you're presenting on Monday, upload your slides by the previous Wednesday at
2:30 PM. If presenting on Wednesday, upload by Monday at 2:30 PM.

< )
—e e —
3. Class Participation: Wed Wed

*Before each class, please read the papers that will be discussed and submit two questions at least
one hour before the class using the following link:
https://docs.google.com/forms/d/e/1FAIpQLSfSxryv JO9Ffbd7iKClgnczgPWJUgv3OGFI6K-
2sAKOJmBYQ/viewform

94 Lingjie Liu


https://docs.google.com/spreadsheets/d/1_FJueXqWnKWoYOGZTNiwp2qRmSP0u1H6ayEYE5j3Ib0/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1_FJueXqWnKWoYOGZTNiwp2qRmSP0u1H6ayEYE5j3Ib0/edit?gid=0#gid=0
https://drive.google.com/drive/folders/1NO-JdWIRtKiLGZOMQxCOUso0AjdtrypY
https://drive.google.com/drive/folders/1NO-JdWIRtKiLGZOMQxCOUso0AjdtrypY
https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-2sAKOJmBYQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-2sAKOJmBYQ/viewform

& Penn
Acknowledgments

« Advances in Neural Rendering
* Neural Fields in Visual Computing and Beyond
« awesome-NeRF: a curated list of awesome neural radiance fields papers

* MPIl Summer Semester 2023: Computer Vision and Machine Learning for Computer
Graphics
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Any Questions?
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