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We Live in a World that is 3D and Contains Dynamics

2



Lingjie Liu

We Digitize Our World in 3D
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Future AI: Towards 3D Aware
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3D Reconstruction of Real-world Scenes

Geometry  
+ Appearance

Motion  
+ Deformation
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Photo-realistic Rendering

 Image Synthesis of Real-world Scenes with 3D Control.
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Applications

Healthcare

Human-robot Interaction

AR / VR

Autonomous Driving Robot Grasping

Gaming / Movie
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Why are they challenging?
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Problem formulation

Captured images Rendering of real-world place

...

Processing

[Mildenhall et al., Neural Radiance Fields (NeRF), ECCV 2020]
[Wu et al., Scalable Neural Indoor Scene Rendering, SIGGRAPH 2022]
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Classical Computer Graphics Pipeline

3D Reconstruction Image Synthesis3D Reconstruction Image-based 3D Reconstruction

Computer Graphics Rendering
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Image-based 3D Reconstruction 

COLMAP [Johannes et al. 2016, Schoenberger et al. 2016] 
(Input: 100 images) 
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Challenges in Image-based Reconstruction

Hard to extract reliable 
correspondences!
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Computer Graphics Rendering
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Rendering requires very high-quality 3D models
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Neural Scene Representation and Neural Rendering 
To the rescue 
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Neural Scene Representation and Neural Rendering

3D Reconstruction Image-based 3D Reconstruction

Computer Graphics Rendering

17

3D Reconstruction Image SynthesisImage Loss

Scene 
Representation Neural Rendering



Neural Scene Representation and Neural Rendering 
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Neural Rendering 

[Tewari et al. 2020] [Tewari et al. 2021]
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Neural Rendering - Definition

• Definition:

"Deep neural networks for image or video generation
that enable explicit or implicit control
of scene properties"

1)

Generative networks that 
synthesis raw pixel output

2)
Controllable by 

interpretable parameters 
or by video/audio input.

3)
Illumination, camera, pose, 
geometry, appearance, or 

semantic structure controllable
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Generative Query Network (GQN)

Neural scene representation and rendering, Eslami et al. 2018
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Generative Query Network (GQN)

Neural scene representation and rendering, Eslami et al. 2018
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Generative Query Network (GQN)

Neural scene representation and rendering, Eslami et al. 2018
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Generative Query Network (GQN)

Neural scene representation and rendering, Eslami et al. 2018
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Neural Rendering Zoo
e.g., G Q N

”Make it more real”

“Regress it” 2D Network 2D
Image

Code

e.g., DVP or DNR2D EncoderC G
(3D to 2D)

3D Mesh

Codes

2D
Image

2D Decoder3D Points
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Training videoSynthetic rendering

Monocular face
reconstruction

Pose

Expression

Eyes

Identity

…

Rendering-to-video
translation network

Deep Video Portraits (DVP)

Deep Video Portraits, Kim et al. 2018
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Face re-animationModified rendering

Pose

Expression

Eyes

Identity

…

Modified face 
parameters

Rendering-to-video
translation network

User interaction

Face reenactment

Deep Video Portraits (DVP)

Deep Video Portraits, Kim et al. 2018
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Neural Rendering Zoo
e.g., G Q N

”Make it more real”

“Regress it” 2D Network

“Regress & render” Network C G
(3D to 2D)

3D Mesh + 2D Texture

3D
Volume

2D
Image

Code

Code

e.g., DVP or DNR

e.g., Neural Volumes

…

2D
Image

3D Points

2D EncoderC G
(3D to 2D)

3D Mesh

Codes

2D
Image

2D Decoder3D Points
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Neural Volumes

31

Neural Volumes: Learning Dynamic Renderable Volumes from Images, Lombardi et al. 2019
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Neural Volumes

33



Lingjie Liu

Neural Volumes

34
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Neural Rendering Zoo
e.g., G Q N

”Make it more real”

”Step, sample & blend”

“Regress it” 2D Network

“Regress & render” Network C G
(3D to 2D)

3D Mesh + 2D Texture

3D
Volume

MLP C G
(3D to 2D)

2D
Image

Code

Code

Coordinates3D
Space

e.g., NeRF

e.g., DVP or DNR

e.g., Neural Volumes

…

2D
Image

2D
Image

3D Points

2D EncoderC G
(3D to 2D)

3D Mesh

Codes

2D
Image

2D Decoder3D Points
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Neural Radiance Fields (NeRF)

36

Scene

𝑐𝑐, σ

(𝑝𝑝, 𝑣𝑣)

MLPs 

[Mildenhall et al. 2020]

L2 loss

Ground Truth Image

𝑥𝑥𝑔𝑔𝑔𝑔

Rendered Image

𝑥𝑥𝑟𝑟

𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑔𝑔𝑔𝑔 2
2
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Neural Radiance Fields (NeRF)

37

[Mildenhall et al. 2020]
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Neural Rendering Zoo
e.g., G Q N

”Make it more real”

”Step, sample & blend”

“Regress it” 2D Network

“Regress & render” Network C G
(3D to 2D)

3D Mesh + 2D Texture

3D
Volume

MLP C G
(3D to 2D)

2D
Image

Code

Code

Coordinates3D
Space

e.g., NeRF

e.g., DVP or DNR

e.g., Neural Volumes

…

2D
Image

2D
Image

3D Points

2D EncoderC G
(3D to 2D)

3D Mesh

Codes

2D
Image

2D Decoder3D Points
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Overview

Scene 
Representation

Voxelgrids Implicit Function

Renderer Volumetric Sphere-Tracing 
Volumetric

Hybrid 
Implicit/Explicit

Volumetric

Both Scene Representation and Differentiable Renderer often
adapted from traditional computer graphics.

(We’ll talk more about other 
representations in our next class)
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Requirements

6

Scene 
Representation

Implicit Function

Renderer

Voxelgrids

Volumetric
Sphere-Tracing 

Volumetric

Pros

Cons

Hybrid 
Implicit/Explicit

Volumetric
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Voxel-based methods

Lombardi et al., SIGGRAPH 2019Sitzmann et al., CVPR 2018

DeepVoxels Neural Volumes HoloGAN

Phuoc et al., ICCV 2019
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Voxel-based methods
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Requirements

8

Scene 
Representation

Implicit Function

Renderer Sphere-Tracing 
Volumetric

Pros

Cons

Voxelgrids

Volumetric

Fast rendering

Memory O(n3)
Limited spatial 

resolution

Hybrid 
Implicit/Explicit

Volumetric
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Requirements

9

Scene 
Representation

Voxelgrids

Renderer Volumetric

Implicit Function

Sphere-Tracing 
Volumetric

Pros

Cons

Fast rendering

Memory O(n3)
Limited spatial 

resolution

Hybrid 
Implicit/Explicit

Volumetric
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Neural Implicit Approaches

Scene Representation Networks 
Generalizes across scenes 

Sitzmann et al., NeurIPS 2019

NeRF
Single-scene 

Mildenhall et al., E C C V 2020

Implicit Differentiable Renderer 
Single-scene

Yariv et al., NeurIPS 2020

Volumetric

Near
Far

Sphere tracing

Differentiable Volumetric Rendering 
Generalizes across scenes

Niemeyer et al., CVPR 2020



Lingjie Liu

Sphere Tracing

[Source:Takikawa et al]
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Sphere Tracing

[Source:Takikawa et al]
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Sphere Tracing

[Source:Takikawa et al]
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Sphere Tracing

[Source:Takikawa et al]
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Sphere Tracing

[Source:Takikawa et al]
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Sphere Tracing

[Source:Takikawa et al]
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Sphere Tracing

[Source:Takikawa et al]
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Sphere Tracing

[Source:Takikawa et al]
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Sphere Tracing

[Source:Takikawa et al]
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Sphere Tracing

[Source:Takikawa et al]
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Sphere Tracing

[Source:Takikawa et al]
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Sphere Tracing

Yay we found the surface!

[Source:Takikawa et al]
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Sphere Tracing

Yay we found the surface!

[Source:Takikawa et al]
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Neural Implicit Approaches

Scene Representation Networks 
Generalizes across scenes 

Sitzmann et al., NeurIPS 2019

NeRF
Single-scene 

Mildenhall et al., E C C V 2020

Implicit Differentiable Renderer 
Single-scene

Yariv et al., NeurIPS 2020

Volumetric
• Higher Quality
• Easy convergence
• Very expensive

Near
Far

Sphere tracing
• Faster
• Fewer network evaluations
• Convergence more difficult

Differentiable Volumetric Rendering 
Generalizes across scenes

Niemeyer et al., CVPR 2020
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Requirements

12

Scene 
Representation

Voxelgrids

Renderer Volumetric

Pros

Cons

Fast rendering

Memory O(n3)
Limited spatial 
resolution

Hybrid 
Implicit/Explicit

Volumetric

Implicit Function

Sphere-Tracing 
Volumetric

High quality 
Compact

Admits global priors

Extremely expensive, 
slow rendering
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Requirements

13

Scene 
Representation

Voxelgrids Implicit Function

Renderer Volumetric Sphere-Tracing 
Volumetric

Pros

Cons

Fast rendering

Memory O(n3)
Limited spatial 

resolution

Hybrid 
Implicit/Explicit

Volumetric

High quality 
Compact

Admits global priors

Extremely expensive, 
slow rendering
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Hybrid Implicit / Explicit

14

PiFU, Saito et al., ICCV 2019
GRF, Trevithick et al., arXiv 2020 
pixelNeRF, Yu et. al., CVPR 2021 

MVSNerf, Chen et al., arXiv 2021
Learn local (image patch-based) priors

Neural Sparse Voxel Fields, 
Liu et. al., NeurIPS 2020

Unconstrained Scene Generation with 
Locally Conditioned Radiance Fields, 

DeVries et al., arXiv 2021
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Neural Sparse Voxel Fields (NSVF)

 Avoid sampling points in empty space as much as possible.

64

Illustration of Sparse Voxels Illustration of a voxel-bounded neural field

Neural Sparse Voxel Fields, Liu et al. 2020
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Neural Sparse Voxel Fields (NSVF)

 Avoid sampling points in empty space as much as possible.

65

Only sample inside the sparse-voxelsSample in the whole space



Lingjie Liu

Comparison

66
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Requirements

15

Scene 
Representation

Voxelgrids Implicit Function

Renderer Volumetric Sphere-Tracing 
Volumetric

Pros

Cons

Fast rendering

Memory O(n3)
Limited spatial 

resolution

High quality 
Compact

Admits global priors

Extremely expensive, 
slow rendering

Hybrid 
Implicit/Explicit

Volumetric

Significant Speedup 
Admits local priors

No compact 
representation 

No global priors



Neural Scene Representation and Neural Rendering 



Lingjie Liu

Neural Fields

15

Scene 
Representation

Voxelgrids Implicit Function

Renderer Volumetric Sphere-Tracing 
Volumetric

Pros

Cons

Fast rendering

Memory O(n3)
Limited spatial 

resolution

High quality 
Compact

Admits global priors

Extremely expensive, 
slow rendering

Hybrid 
Implicit/Explicit

Volumetric

Significant Speedup 
Admits local priors

No compact 
representation 

No global priors
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Definition of Fields

A field is a quantity defined for all
spatial and / or temporal coordinates.

70
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Examples of Fields

Vector Field

Fields
[Source: Wikipedia]
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Examples of Fields

Vector FieldImage

Fields
[Source: Wikipedia]
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Examples of Fields

Vector FieldImage3D Parabola 
(Explicit Surface)

Fields
[Source: Wikipedia]
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Examples of Fields

Vector FieldImage3D Parabola 
(Explicit Surface)

3D Signed Distance Fields 
(Implicit Surface)

Fields
[Source: Wikipedia]
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Examples of Fields

Vector FieldImage3D Parabola 
(Explicit Surface)

3D Signed Distance Fields 
(Implicit Surface)

Fields
Audio

[Source: Wikipedia]
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What are neural fields?

Continuous Discrete Neural

Fields / signals can be represented in many ways.
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What are neural fields?

Magnetic Field
Neural Network (Φ)

Φ:ℝ2 → ℝ2

(x,y)

Eulerian Flow Field of a Fluid 
[Koldora CC]

Neural Network (Φ)

Φ:ℝ2 → ℝ2

(x,y)
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What are neural fields?

Signed Distance Function (SDF)

Φ:ℝ𝑛𝑛 → ℝ

(x,y,z)

Neural Network (Φ)

Geospatial Data
[Blumenstock et al. 2015]

Φ:ℝ2 → ℝ𝑛𝑛

(x,y)

Neural Network (Φ)
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What we want to 
reconstruct:

What we can 
measure:

The bridge:
differentiable renderer

Optimization via gradient descent

Depth Image

RGB Image

Sensor DomainCoordinate Sampling

Spatial

Temporal t

yx

z

Neural Network Forward Map

Volume Rendering

Sphere Tracing

Radiance + Density Field

Reconstruction Domain

Signed Distance Field

Conditioning
z

MLP

Hybrid

Neural Fields General Framework
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Differentiable Rendering 

Reconstruction Forward Map Sensor Domain

Sphere Tracing Normal Depth
SDF

Figures adapted from: 
Mildenhall et al. 2020 (NeRF)
Sitzmann et al. 2019 (SRN)

Volume Rendering RGB Image DepthRadiance Field

Output Rendering

Neural 
Renderer
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BRDF Shading 
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Course Link: 
https://neural-representation-2024.github.io/topics.html

82
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TAs

83

Xuyi Meng
Email: mengxuyi@seas.upenn.edu

Chuhao Chen
Email: morphling233@gmail.com
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Preliminary Syllabus

No. Date Content
1 Aug 28 (Wed) Intro
2 Sept 4 (Wed) Intro 2

3 - 12 Sept 9 (Mon) – Oct 9 (Wed) Paper Presentations (round 1)
13 - 16 Oct 14 (Mon) – Oct 23 (Wed) Guest Talks 
17 – 26 Oct 28 (Mon) – Nov 27 (Wed) Paper Presentations (round 2)

27 Dec 2 (Mon) Practice lecture (e.g., NerfStudio)
28 Dec 4 (Wed) Discussion on your favorite papers in Neural 

Representation and Neural Rendering (5 mins per 
person)

29 Dec 9 (Mon) Summary + Brainstorming new ideas
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Next Class

85

1. Present some pioneering works in this field, e.g., NeRF, SRN, Neural Volumes, …
2. Fundamentals of Classical 3D Representations and Rendering in Computer 

Graphics 
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Note: For a paper bundle, you 
only need to present one of the 
papers in the bundle according 
to their preference, but you are 
encouraged to discuss the 
connections between the 
papers in the bundle.
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Before the seminar

• Read the papers of the week.

• Submit at least two questions for discussion before the seminar to a Google form 
(https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3O
GFI6K-2sAKOJmBYQ/viewform). This is important – your contribution will be marked. 
The deadline for submitting questions is one hour before each class session (so 
Monday 2:30 PM and Wednesday 2:30 PM).

https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-2sAKOJmBYQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-2sAKOJmBYQ/viewform
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During the seminar (Starting from Sept 9, two rounds)
• Overview (10 minutes) 
   - The instructor or TAs give a brief introduction on the topic.

• 2x Presentations (each 25 minutes, 25 % of grade):
  -  Two pre-assigned participants present the paper of their choice.
  -  5 minutes on motivation, background and related work.
  -  20 minutes of presentation of the paper.

• Discussion and Feedback (30 minutes, 25% of grade across weeks):
  - One participant is assigned at random at the beginning of the seminar to lead the 
discussion. Everyone leads the discussion at least once in the seminar series.
  - The discussion leader receives a digest of the submitted questions just before the seminar.
  - The discussion leader raises questions appropriately throughout the discussion, covers 
future work aspects, and finally provides a summary of the strengths and weaknesses of the 
techniques and of the discipline.
  - The students provide feedback to the presenting student on their presentation with 
respect to what has worked well, and what could be improved and how.
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Grading Criteria

2x Presentations 
(50% of grade)

Discussion 
(25% of grade)

Form (30%)
To time? Verbal speed & 
clarity? Body posture? 

Engagement with audience?

Content (50%)
Structure/storyline? Main 

points? Paper connections? 
Valid conclusions?

Answers (20%)
Good answers to questions? 

Knowledgeable? 

Moderation (30%)
Integrates questions well? Pushes 

forward discussion?
Good summary? Strengths and 

weaknesses of paper?

Questions (70%)
One question per paper (two 

questions per class) should be 
submitted at least one hour 

before the class during which 
the paper will be presented. 

(However, students are 
permitted to submit questions 

late (but before the discussion), 
up to two occurrences,  without 

facing any penalties)

Other Activity Participation 
(25% of grade)

Practice Lecture (30%)
Listen attentively to the lecture?  

Engage in small coding exercises?

Discussion on your favorite 
papers (35%)

Each person has 5 minutes to 
present their favorite paper. Is your 
presentation clear? Explain clearly 
why you chose it and what you like 

about it?

Brainstorming (35%)
Actively participate in the 

discussion? Contribute your own 
ideas or opinions?
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TODOs After this Class
1. Paper Selection and Registration:  [Important! Deadline: Sept 3] 
Please select and register for the two papers you would like to present using the following Excel 
link: 
https://docs.google.com/spreadsheets/d/1_FJueXqWnKWoYOGZTNiwp2qRmSP0u1H6ayEYE5j3Ib0/
edit?gid=0#gid=0

2. Presentation Preparation: 
• Ensure you are fully prepared one class before your scheduled class for presentation.
• Upload your slides to the Google folder (https://drive.google.com/drive/folders/1NO-

JdWIRtKiLGZOMQxCOUso0AjdtrypY) at least one hour before the class prior to your 
assigned class for presentation. This is important in case of an emergency requiring us to 
reschedule your talk.

• For example, if you’re presenting on Monday, upload your slides by the previous Wednesday at 
2:30 PM. If presenting on Wednesday, upload by Monday at 2:30 PM. 

3. Class Participation:
•Before each class, please read the papers that will be discussed and submit two questions at least 
one hour before the class using the following link: 
https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-
2sAKOJmBYQ/viewform

Wed Mon Wed

https://docs.google.com/spreadsheets/d/1_FJueXqWnKWoYOGZTNiwp2qRmSP0u1H6ayEYE5j3Ib0/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1_FJueXqWnKWoYOGZTNiwp2qRmSP0u1H6ayEYE5j3Ib0/edit?gid=0#gid=0
https://drive.google.com/drive/folders/1NO-JdWIRtKiLGZOMQxCOUso0AjdtrypY
https://drive.google.com/drive/folders/1NO-JdWIRtKiLGZOMQxCOUso0AjdtrypY
https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-2sAKOJmBYQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-2sAKOJmBYQ/viewform
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Acknowledgments
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• Advances in Neural Rendering

• Neural Fields in Visual Computing and Beyond

• awesome-NeRF: a curated list of awesome neural radiance fields papers

• MPII Summer Semester 2023: Computer Vision and Machine Learning for Computer 
Graphics
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Any Questions?
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