Introduction to Neural Scene Representation and Neural Rendering

We Live in a World that is 3D and Contains Dynamics

We Digitize Our World in 3D

Future AI: Towards 3D Aware

3D Reconstruction of Real-world Scenes

Geometry + Appearance

Motion + Deformation

Photo-realistic Rendering

Image Synthesis of Real-world Scenes with 3D Control.

Applications

AR / VR

Gaming / Movie

Healthcare

Autonomous Driving **Robot Grasping**

Human-robot Interaction

Why are they challenging?

Problem formulation

[Mildenhall et al., Neural Radiance Fields (NeRF), ECCV 2020] [Wu et al., Scalable Neural Indoor Scene Rendering, SIGGRAPH 2022]

Classical Computer Graphics Pipeline

Computer Graphics Rendering

Image-based 3D Reconstruction

COLMAP [Johannes et al. 2016, Schoenberger et al. 2016] (Input: 100 images)

Challenges in Image-based Reconstruction

Computer Graphics Rendering

Rendering requires very high-quality 3D models

Neural Scene Representation and Neural Rendering To the rescue

Neural Scene Representation and Neural Rendering

Neural Scene Representation and Neural Rendering

Neural Rendering

DOI: 10.1111/eef.14022 EUROGRAPHICS 2020

R. Mantiuk and V. Sundsted

Abstract

1. Introduction

(Guest Editors)

Neural Rendering - Definition

• Definition:

"Deep neural networks for image or video generation that enable explicit or implicit control of scene properties"

Neural scene representation and rendering, Eslami et al. 2018

neural rendering

observation

Neural scene representation and rendering, Eslami et al. 2018

neural rendering

observation

Neural scene representation and rendering, Eslami et al. 2018

observations

Neural scene representation and rendering, Eslami et al. 2018

Neural Rendering Zoo

Deep Video Portraits (DVP)

Training video

Deep Video Portraits, Kim et al. 2018

Deep Video Portraits (DVP)

Deep Video Portraits, Kim et al. 2018

Neural Rendering Zoo

Neural Volumes

Neural Volumes: Learning Dynamic Renderable Volumes from Images, Lombardi et al. 2019

Neural Volumes

Neural Volumes

Neural Rendering Zoo

Neural Radiance Fields (NeRF)

[Mildenhall et al. 2020]

Neural Radiance Fields (NeRF)

[Mildenhall et al. 2020]

Neural Rendering Zoo

Overview

Both Scene Representation and Differentiable Renderer often adapted from traditional computer graphics.

Requirements

Implicit Function

Sphere-Tracing Volumetric

Hybrid Implicit/Explicit

Volumetric

Pros

Cons

6
Voxel-based methods

DeepVoxels **Neural Volumes** HoloGAN

Sitzmann et al., CVPR 2018 Lombardi et al., SIGGRAPH 2019

Phuoc et al., ICCV 2019

Voxel-based methods

. Trilinear Interpolation

Requirements

Scene Representation

Voxelgrids

Pros

Renderer | Volumetric | Sphere-Tracing

Cons

Volumetric

Memory *O(n3)* Limited spatial resolution

Fast rendering

Volumetric

Implicit Function

Hybrid Implicit/Explicit

Volumetric

Requirements

Scene Representation

Voxelgrids

Renderer | Volumetric

Implicit Function

Hybrid Implicit/Explicit

Volumetric

Cons

Pros

Memory *O(n3)* Limited spatial resolution

Fast rendering

Neural Implicit Approaches

Scene Representation Networks Generalizes across scenes Sitzmann et al., NeurIPS 2019

Differentiable Volumetric Rendering Generalizes across scenes Niemeyer et al., CVPR 2020

NeRF Single-scene Mildenhall et al., ECCV 2020

Implicit Differentiable Renderer Single-scene Yariv et al., NeurIPS 2020

Sphere tracing

Volumetric

[Source:Takikawa et al]

[Source:Takikawa et al]

[Source:Takikawa et al]

[Source:Takikawa et al]

[Source:Takikawa et al]

[Source:Takikawa et al]

[Source:Takikawa et al]

[Source:Takikawa et al]

[Source:Takikawa et al]

[Source:Takikawa et al]

[Source:Takikawa et al]

 $f(x, y, z) = d$

Neural Implicit Approaches

Scene Representation Networks Generalizes across scenes Sitzmann et al., NeurIPS 2019

Differentiable Volumetric Rendering Generalizes across scenes Niemeyer et al., CVPR 2020

NeRF Single-scene Mildenhall et al., ECCV 2020

Implicit Differentiable Renderer Single-scene Yariv et al., NeurIPS 2020

Lingjie Liu

10

Sphere tracing

- Faster
- Fewer network evaluations
- Convergence more difficult

Volumetric

- Higher Quality
- Easy convergence
- Very expensive

Requirements

Voxelgrids

Volumetric

Pros

Cons

Fast rendering

Memory *O(n3)* Limited spatial resolution

Implicit Function

Sphere-Tracing Volumetric

High quality Compact Admits *global* priors

Extremely expensive, slow rendering

Hybrid Implicit/Explicit

Volumetric

Requirements

Voxelgrids Implicit Function

High quality Compact Admits *global* priors

Hybrid Implicit/Explicit

Volumetric

Cons

Pros

Memory *O(n3)* Limited spatial resolution

Fast rendering

Extremely expensive, slow rendering

13

Hybrid Implicit / Explicit

Wine Holder

(Rendering speed: 1.68 s/frame)

Neural Sparse Voxel Fields, Liu et. al., NeurIPS 2020

PiFU, Saito et al., ICCV 2019 GRF, Trevithick et al., arXiv 2020 pixelNeRF, Yu et. al., CVPR 2021 MVSNerf, Chen et al., arXiv 2021 Learn *local* (image patch-based) priors

Unconstrained Scene Generation with Locally Conditioned Radiance Fields, DeVries et al., arXiv 2021

Neural Sparse Voxel Fields (NSVF)

■ Avoid sampling points in empty space as much as possible.

Illustration of Sparse Voxels Illustration of a voxel-bounded neural field

Neural Sparse Voxel Fields, Liu et al. 2020

Neural Sparse Voxel Fields (NSVF)

■ Avoid sampling points in empty space as much as possible.

Sample in the whole space Sample inside the sparse-voxels

Comparison

NeRF (Mildenhall et al. 2020) (Rendering speed: 100 s/frame)

Ours (NSVF) (Rendering speed: 2.62 s/frame)

Requirements

Renderer Volumetric Sphere-Tracing Volumetric

Pros

Cons

Fast rendering

High quality Compact Admits *global* priors

Significant Speedup Admits *local* priors

Memory *O(n3)* Limited spatial resolution

Extremely expensive, slow rendering

No compact representation No *global* priors

Hybrid Implicit/Explicit

Volumetric

Neural Scene Representation and Neural Rendering

Neural Fields

Pros

Cons

Renderer **Volumetric** Sphere-Tracing

Voxelgrids Implicit Function

Volumetric

Hybrid Implicit/Explicit

Volumetric

Fast rendering

High quality Compact Admits *global* priors

Significant Speedup Admits *local* priors

bsite that acts as a living database that can be continually updated by the communi

we present a com **CCS** Concepts

 \cdot Computing methodologies \rightarrow Machine Learning: Artificial Intelligence

Memory *O(n3)* Limited spatial resolution

Extremely expensive, slow rendering

No compact representation No *global* priors

15

Definition of Fields

A *field* is a quantity defined for all spatial and / or temporal coordinates.

Vector Field

[Source: Wikipedia]

CETTEN

Fields

[Source: Wikipedia]

[Source: Wikipedia]

[Source: Wikipedia]

What are neural fields?

Fields / signals can be represented in many ways.

Continuous **Continuous** Discrete **Neural**

What are neural fields?

Lingjie Liu ⁷⁷

[Koldora CC]
What are neural fields?

78 Marc 19 (Blumenstock et al. 2015) Lingjie Liu Geospatial Data [Blumenstock et al. 2015]

Neural Fields General Framework

Differentiable Rendering

Lingjie Liu Sitzmann et al. 2019 (SRN) Figures adapted from: Mildenhall et al. 2020 (NeRF)

BRDF Shading

$$
L(\mathbf{x},\vec{\omega}_{o})=L_{e}(\mathbf{x},\vec{\omega}_{o})+\int_{S}f_{r}(\mathbf{x},\vec{\omega}_{i}\rightarrow\vec{\omega}_{o})L(\mathbf{x}',\vec{\omega}_{i})G(\mathbf{x},\mathbf{x}')V(\mathbf{x},\mathbf{x}')d\omega_{i}
$$

Course Link: https://neural-representation-2024.github.io/topics.html

TAs

Xuyi Meng Email: mengxuyi@seas.upenn.edu

Chuhao Chen Email: morphling233@gmail.com

Preliminary Syllabus

Next Class

- 1. Present some pioneering works in this field, e.g., NeRF, SRN, Neural Volumes, …
- 2. Fundamentals of Classical 3D Representations and Rendering in Computer **Graphics**

Topic and Papers

Fast Inference

BakedSDF: Meshing Neural SDFs for Real-Time View Synthesis Yariv et al. SIGGRAPH 2023 3D Gaussian Splatting for Real-Time Radiance Field Rendering Kerbl et al. SIGGRAPH 2023 (Best Paper Award) 2D Gaussian Splatting for Geometrically Accurate Radiance Fields Huang et al. SIGGRAPH 2024

Fast Training

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding Müller et al. ACM ToG 2022

TensoRF: Tensorial Radiance Fields Chen and Xu et al. **ECCV 2022** + Factor Fields: A Unified Framework for Neural Fields and Beyond Chen et al. SIGGRAPH 2023

Antialiasing

Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields Barron et al. ICCV 2021 (Oral, Best Paper Honorable Mention) + Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields Barron et al. CVPR 2022 (Oral Presentation) + Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields Barron et al. ICCV 2023 (Oral Presentation, Best Paper Finalist) Mip-NeRF v.s. Mip-NeRF 360 v.s. Zip-NeRF: **Common:** Address the aliasing artifacts of NeRF. Mip-NeRF: Mitigates aliasing artifacts at different resolutions by replacing point sampling with Gaussian sampling. Mip-NeRF 360: Extends Mip-NeRF to unbounded scenes using a non-linear scene parameterization to allocate appropriate capacity for foreground and background. Zip-NeRF: Addresses z-aliasing artifacts from Mip-NeRF 360's resampling and adapts to an efficient grid representation using multisampling within a conical frustum. **Mip-Splatting: Alias-free 3D Gaussian Splatting**

Yu et al. CVPR 2024 (Best Student Paper Finalist)

Note: For a paper bundle, you only need to present one of the papers in the bundle according to their preference, but you are encouraged to discuss the connections between the papers in the bundle.

Large (Unbounded) Scenes

3D Generative Model

[Per-scene optimization: diffusion distillation]

DreamFusion: Text-to-3d using 2D diffusion Poole et al. **ICLR 2023** + ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation Wang et al. NeurlPS 2023 (Spotlight)

[Single-view image \rightarrow Multi-view image \rightarrow 3D reconstruction]

Cat3D: Create Anything in 3D with Multi-View Diffusion Models Gao et al. arXiv 2024

InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction **Models**

Xu et al. arXiv 2024

+ LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation Tang et al.

ECCV 2024 (Oral)

+ One-2-3-45++: Fast Single Image to 3D Objects with Consistent Multi-View Generation and 3D **Diffusion**

Liu et al.

CVPR 2024

[Pose-free 3D Generation]

PF-LRM: Pose-Free Large Reconstruction Model for Joint Pose and Shape Prediction Wang et al. arXiv 2024 + SpaRP: Fast 3D Object Reconstruction and Pose Estimation from Sparse Views Xu et al. **ECCV 2024** PF-LRM v.s. SpaRP: Common: 3D reconstruction from sparse unknown-posed images. PF-LRM: Explicit matching through pointcloud + differentiable PnP solver. SpaRP: Distill stable diffusion model to predict NOCS images for camera pose estimation.

[Native 3D Generation]

Splatter Image: Ultra-Fast Single-View 3D Reconstruction Szymanowicz et al. **CVPR 2024**

[Multi-view ImageNet]

EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks Chan et al. **CVPR 2022 3D generation on ImageNet** Skorokhodov et al. ICLR 2023 (Oral)

Dynamic Scenes & Human

Shape of Motion: 4D Reconstruction from a Single Video Wang et al. arXiv 2024 + MoSca: Dynamic Gaussian Fusion from Casual Videos via 4D Motion Scaffolds Li et al. arXiv 2024

K-Planes: Explicit Radiance Fields in Space, Time, and Appearance Fridovich-Keil et al. **CVPR 2023** 4K4D: Real-Time 4D View Synthesis at 4K Resolution Xu et al. **CVPR 2024**

Pose Estimation

COLMAP-Free 3D Gaussian Splatting Fu et al. **CVPR 2024** Local-to-Global FlowCam: Training Generalizable 3D Radiance Fields without Camera Poses via Pixel-**Aligned Scene Flow** Smith et al. NeurlPS 2023

Lighting

TensolR: Tensorial Inverse Rendering Jin et al. **CVPR 2023** Relightable 3D Gaussian: Real-time Point Cloud Relighting with BRDF Decomposition and Ray Tracing Zhang et al. **ECCV 2024**

Physics Simulation

PhysGaussian: Physics-Integrated 3D Gaussians for Generative Dynamics Xie et al. CVPR 2024 (Highlight) PhysAvatar: Learning the Physics of Dressed 3D Avatars from Visual Observations Zheng et al. **ECCV 2024**

Editing & Multi-modality

Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions Haque et al. ICCV 2023 (Oral) PlatoNeRF: 3D Reconstruction in Plato's Cave via Single-View Two-Bounce Lidar Klinghoffer et al. CVPR 2024 (Oral, Best Paper Award Finalist)

Robotics

LERF: Language Embedded Radiance Fields Kerr et al. ICCV 2023 (Oral) + LERF-TOGO: Language Embedded Radiance Fields for Zero-Shot Task-Oriented Grasping Rashid et al. CORL 2023 (Best Paper Finalist) **LERF v.s. LERF-TOGO:** Common: Embed language embeddings into 3D scene representation. LERF: Enables pixel-aligned zero-shot queries on the distilled 3D CLIP embedding. LERF-TOGO: Extends LERF to task-oriented grasping by adding DINO feature grouping.

Unifying 3D Representation and Control of Diverse Robots with a Single Camera

Li et al.

arXiv 2024

Surface Reconstruction

NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction Wang et al. NeurlPS 2021 + NeuS2: Fast Learning of Neural Implicit Surfaces for Multi-view Reconstruction Wang et al. **ICCV 2023**

Gaussian Opacity Fields: Efficient and Compact Surface Reconstruction in Unbounded Scenes Yu et al. arXiv 2024

Differentiable Mesh Extraction

NeurCross: A Self-Supervised Neural Approach for Representing Cross Fields in Quad Mesh Generation Dong et al. arXiv 2024 **Flexible Isosurface Extraction for Gradient-Based Mesh Optimization** Shen et al. SIGGRAPH 2023

Before the seminar

- Read the papers of the week.
- Submit at least two questions for discussion before the seminar to a Google form ([https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3O](https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-2sAKOJmBYQ/viewform) [GFI6K-2sAKOJmBYQ/viewform](https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-2sAKOJmBYQ/viewform)). This is important – your contribution will be marked. The deadline for submitting questions is one hour before each class session (so Monday 2:30 PM and Wednesday 2:30 PM).

During the seminar (Starting from Sept 9, two rounds)

- Overview (10 minutes)
	- The instructor or TAs give a brief introduction on the topic.
- 2x Presentations (each 25 minutes, 25 % of grade):
	- Two pre-assigned participants present the paper of their choice.
	- 5 minutes on motivation, background and related work.
	- 20 minutes of presentation of the paper.
- Discussion and Feedback (30 minutes, 25% of grade across weeks):

 - One participant is assigned at random at the beginning of the seminar to lead the discussion. Everyone leads the discussion at least once in the seminar series.

- The discussion leader receives a digest of the submitted questions just before the seminar.

 - The discussion leader raises questions appropriately throughout the discussion, covers future work aspects, and finally provides a summary of the strengths and weaknesses of the techniques and of the discipline.

 - The students provide feedback to the presenting student on their presentation with respect to what has worked well, and what could be improved and how.

Grading Criteria

TODOs After this Class

1. *Paper Selection and Registration*: **[Important! Deadline: Sept 3]**

Please select and register for the two papers you would like to present using the following Excel link:

[https://docs.google.com/spreadsheets/d/1_FJueXqWnKWoYOGZTNiwp2qRmSP0u1H6ayEYE5j3Ib0/](https://docs.google.com/spreadsheets/d/1_FJueXqWnKWoYOGZTNiwp2qRmSP0u1H6ayEYE5j3Ib0/edit?gid=0#gid=0) edit?gid= $0#qid=0$

2. *Presentation Preparation*:

- Ensure you are fully prepared **one class before your scheduled class for presentation**.
- Upload your slides to the Google folder [\(https://drive.google.com/drive/folders/1NO-](https://drive.google.com/drive/folders/1NO-JdWIRtKiLGZOMQxCOUso0AjdtrypY)[JdWIRtKiLGZOMQxCOUso0AjdtrypY\)](https://drive.google.com/drive/folders/1NO-JdWIRtKiLGZOMQxCOUso0AjdtrypY) **at least one hour before the class prior to your assigned class for presentation**. This is important in case of an emergency requiring us to reschedule your talk.
- For example, if you're presenting on Monday, upload your slides by the previous Wednesday at 2:30 PM. If presenting on Wednesday, upload by Monday at 2:30 PM.

3. *Class Participation*:

•Before each class, please read the papers that will be discussed and submit two questions **at least one hour before the class** using the following link:

[https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-](https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-2sAKOJmBYQ/viewform)[2sAKOJmBYQ/viewform](https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-2sAKOJmBYQ/viewform)

Acknowledgments

- Advances in Neural Rendering
- Neural Fields in Visual Computing and Beyond
- awesome-NeRF: a curated list of awesome neural radiance fields papers
- MPII Summer Semester 2023: Computer Vision and Machine Learning for Computer **Graphics**

Any Questions?