Invited Speakers

Jiatao Gu Research Scientist at Apple Incoming Assistant Professor at Penn

Oct 14 (Mon)

Ruoshi Liu PhD at Columbia University

Oct 16 (Wed)

Guandao Yang Postdoc at Stanford University

Oct 23 (Wed)

Lingjie Liu

Oct 9, 2024

3D GANs

GRAF, pi-GAN, StyleNeRF, EG3D, GIRAFFE, Next3D, ...

Lifting 2D Diffusion Models for 3D Generation

NerfDiff, DreamFusion, ...

3D Diffusion Models

Lifting 2D GANs for 3D Generation

GAN2Shape, GAN2X, ...

3D GANs

GRAF, pi-GAN, StyleNeRF, EG3D, GIRAFFE, Next3D, ...

Lifting 2D Diffusion Models for 3D Generation

NerfDiff, DreamFusion, ...

3D Diffusion Models

Lifting 2D GANs for 3D Generation

GAN2Shape, GAN2X, ...

3D GANs

GRAF, pi-GAN, StyleNeRF, EG3D, GIRAFFE, Next3D, ...

Lifting 2D Diffusion Models for 3D Generation

NerfDiff, DreamFusion, ...

3D Diffusion Models

Background

Generative Adversarial Networks (GANs)

GAN2X: Non-Lambertian Inverse Rendering of Image GANs

Inverse rendering

New view&light

Pan et al. 2022. GAN2X: Non-Lambertian Inverse Rendering of Image GANs, 3DV 2022

Method

Method: Exploration

$$\boldsymbol{\theta}_{w} = \operatorname*{arg\,min}_{\boldsymbol{\theta}_{w}} \frac{1}{m} \sum_{i=0}^{m} \mathcal{L} \Big(\mathbf{I}_{i}, G \big(E_{w}(\mathbf{I}_{i}) + \boldsymbol{w} \big) \Big) + \lambda_{1} \| E_{w}(\mathbf{I}_{i}) \|_{2}$$
(4)

Method: Exploitation

Qualitative Comparison on CelebA: Rotation

GAN2Shape

Unsup3d

Rendering

Ours

Shape

Normal

Albedo

Lifting 2D GANs for 3D Generation

GAN2Shape, GAN2X, ...

3D GANs

GRAF, pi-GAN, StyleNeRF, EG3D, GIRAFFE, Next3D, ...

Lifting 2D Diffusion Models for 3D Generation

NerfDiff, DreamFusion, ...

3D Diffusion Models

2D GANs -> 3D GANs

Making GANs 3D aware/consistent

Using Explicit Representation for 3D GANs

- Explicit representation of 3D GANs
 - HoloGAN
 - BlockGAN

NeRF-GANs

Naïve implementation of putting NeRF into GANs

Training: $\mathcal{L}(D,G) = \mathbb{E}_{\boldsymbol{z} \sim \mathcal{Z}, \boldsymbol{p} \sim \mathcal{P}} \left[f(D(G(\boldsymbol{z},\boldsymbol{p}))) + \mathbb{E}_{I \sim p_{\text{data}}} \left[f(-D(I) + \lambda \| \nabla D(I) \|^2) \right] \right]$

NeRF-GANs

Naïve implementation of putting NeRF into GANs

GRAF

- GRAF is the first work combining NeRF in GAN framework
 - Simple MLP architecture, global Z concat with input position:
 - Not expressive enough to handle complex scenes
 - Sampling patches for discriminator to speed-up training
 - Worse performance on high-resolution images
 - Not really solve the rendering speed problem

GRAF

- GRAF is the first work combining NeRF in GAN framework
 - Simple MLP architecture, global Z concat with input position:
 - Not expressive enough to handle complex scenes
 - Sampling patches for discriminator to speed-up training
 - Worse performance on high-resolution images
 - Not really solve the rendering speed problem

Pi-GAN

- Pi-GAN achieves much better visual quality than GRAF
 - StyleGAN like mapping and synthesis network
 - SIREN activations
 - The model is trained at full resolution, so it is slow and can only work in low-resolution
 - The quality is still not good enough and far from 2D models
 - Inference is also slow

Chan, E. R., Monteiro, M., Kellnhofer, P., Wu, J., & Wetzstein, G. (2021). pi-gan: Periodic implicit generative adversarial networks for 3d-aware image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5799-5809).

GiRAFFE

- GiRAFFE proposes a compositional NeRF with a 2D CNN decoder
 - Same as GRAF, z concat with position
 - NeRF works in 16x16 resolution
 - Light-weight, rendering is pretty fast
 - Architecture is too simple to handle complex scenes
 - 2D CNN causes serious inconsistency in the rendered outputs

Our Results: FFHQ Dataset (1024x1024)

This is the first time that a generative model can synthesize high-resolution images from novel views while preserving high 3D consistency

Gu et al. StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis. ICLR 2022.

StyleNeRF - Method

Approximated Volume Rendering

$$I_{\boldsymbol{w}}^{\text{NcRF}}(\boldsymbol{r}) = \int_{0}^{\infty} p_{\boldsymbol{w}}(t) \boldsymbol{c}_{\boldsymbol{w}}(\boldsymbol{r}(t), \boldsymbol{d}) dt, \text{ where } p_{\boldsymbol{w}}(t) = \exp\left[\int_{0}^{\infty} p_{\boldsymbol{w}}(t) \cdot h_{c} \circ [\phi_{\boldsymbol{w}}^{n_{c}}(\boldsymbol{r}(t)), \zeta(\boldsymbol{d})] dt \approx h_{c} \circ [\phi_{\boldsymbol{w}}^{n_{c}, n_{\sigma}} [\boldsymbol{d}]\right]$$

$$\phi_{\boldsymbol{w}}^{n,n_{\sigma}}(\mathcal{A}(R_{H})) \approx \text{Upsample}\left(\phi_{\boldsymbol{w}}^{n,n_{\sigma}}(\mathcal{A}(R_{L}))\right)$$

StyleNeRF - Method

- Remove view direction input
 - We found that view direction will break the consistency and did not contribute to much quality (our dataset is single image)
- Up-sampler design

 $Upsample(X) = Conv2d(Pixelshuffle(Repeat(X, 4) + \psi_{\theta}(X), 2), K)$

NeRF-path regularization

$$\mathcal{L}_{\text{NeRF-path}} = \frac{1}{|S|} \sum_{(i,j)\in S} \left(I_{\boldsymbol{w}}^{\text{Approx}}(R_{\text{in}})[i,j] - I_{\boldsymbol{w}}^{\text{NeRF}}(R_{\text{out}}[i,j]) \right)^2$$

24

Tri-plane representations

Explosion of 3D GANs

CIPS-3D [Zhou et al. 2021]

VolumeGAN [Xu et al. 2022]

GRAM [Deng et al. 2022]

StyleSDF [Or-El et al. 2022]

