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Background

 NeRF (Mildenhall et al. 2020)

3

To render an image at 1920x1080 pixels, 
how many calls of the MLPs are needed?
 
(1920x1080) x 192 = 398, 131, 200

It takes about 100 seconds to render such 
an image using an NVIDIA V100 GPU 

Rendering speed: 100 s/frame 
Image resolution: 1920x1080
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Background

 NeRF (Mildenhall et al. 2020)

4

To render an image at 1920x1080 pixels, 
how many calls of the MLPs are needed?
 
(1920x1080) x 192 = 398, 131, 200

It takes about 100 seconds to render such 
an image using an NVIDIA V100 GPU 

Two possible ideas to accelerate the 
rendering process:

1. Reduce sampling points.
2. Reduce the runtime for one pass.Illustration of volume rendering in NeRF
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Neural Sparse Voxel Fields
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Our Method -- Neural Sparse Voxel Fields   (NSVF)
 Avoid sampling points in empty space as much as possible.
 Neural Sparse Voxel Fields (NSVF), a hybrid scene representation for fast 

and high-quality free-viewpoint rendering.

6

Illustration of NSVF
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Our Method (NSVF)

 Scene Representation - Neural Sparse Voxel Fields (NSVF).
 Volume Rendering with NSVF.

 Progressive Learning:  we train NSVF progressively with the differentiable 
volume rendering operation from a set of posed 2D images.

7
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Scene Representation - NSVF

The scene is modeled as a set of voxel-bounded implicit functions: 

The relevant non-empty parts of a scene are contained within a set of sparse 
bounding voxels:

8
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Scene Representation - NSVF

A voxel-bounded implicit field

 For a given point p inside voxel Vi, the voxel-bounded implicit field is defined as:

 Voxel embedding is defined as:

Trilinear interpolation

Positional encoding 

Voxel features (e.g. learnable voxel embeddings)

voxel embedding ray direction color density

9
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Volume Rendering with NSVF

Rendering NSVF is fast because it avoids sampling points in the empty space. 

 Ray-voxel Intersection.

 Ray marching inside voxels.

10
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Volume Rendering with NSVF

Ray-voxel Intersection

 Apply Axis Aligned Bounding Box (AABB) intersection test [Haines, 1989] for 
each ray.

 AABB is very efficient for NSVF, handling millions of ray-voxel intersections 
in real time. 

11



Fast Rendering of Neural Radiance Fields, Lingjie Liu

Volume Rendering with NSVF

Ray Marching inside Voxels

 Uniformly sample points along the ray inside each intersected voxel, and 
evaluate NSVF to get the color and density of each sampled point. 

12
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Volume Rendering with NSVF

13

NeRF’s sampling method Sampling with Sparse Voxels
Coarse sampling Importance sampling
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Volume Rendering with NSVF
Early Termination

 Avoid taking unnecessary accumulation steps behind the surface;
 Stop evaluating points earlier when the accumulated densities close to 1

14
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Progressive Learning

 Because our rendering process is differentiable, the model can be trained 
end-to-end with 2D posed images as input for supervision.

15

Predicted color Ground truth color
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Progressive Learning

A progressive training strategy to learn NSVF from coarse to fine 

 Voxel Initialization
 Self-Pruning
 Progressive Training

Illustration of self-pruning and progressive training

16
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Progressive Learning

Voxel Initialization

 The initial bounding box encloses the whole scene with sufficient margin. We 
eventually subdivide the bounding box into ~1000 voxels. 

 If a coarse geometry is available, the initial voxels can also be initialized by 
voxelizing the coarse geometry.

17
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Progressive Learning

 We improve rendering efficiency by pruning “empty” voxels.
– Determine whether a voxel is empty or not by checking the maximum 

predicted density from sampled points inside the voxel.  

– Since this pruning process does not rely on other processing modules or 
input cues, we call it  “self-pruning”.

Self-Pruning

density

18
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Progressive Learning

Progressive Training

 Self-pruning enables us to progressively allocate our resources.
 Progressive training:

– Halve the size of voxels → Split each voxel into 8 sub-voxels.
– Halve the size of ray marching steps.
– The feature representations of the new vertices are initialized via trilinear 

interpolation of feature representations at the original eight voxel vertices. 

Illustration of self-pruning and progressive training
19
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Results

20

*NSVF0 is without early termination
*NSVF is executed with early termination (𝜀𝜀 = 0.01) 
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Results

21

*NSVF0 is without early termination (Green curve)
*NSVF is executed with early termination (𝜀𝜀 = 0.01) (Red curve)

x-axis: foreground to background ratio 
y-axis: rendering time in second
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Results

22
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Zoom-in & Zoom-out Effects
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Rendering of Dynamic Scenes

24
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Rendering of Large-scale Indoor Scenes

25
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Scene Editing and Composition

26
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Main Limitation

 Real-time performance
– Although our method is typically 10x faster than Nerf, it is still far from real 

time performance.
– NeRF 0.06 FPS v.s. NSVF 1.1 FPS v.s. Real-time Rendering >25 FPS

27
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Real-time NeRF Rendering
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Caching the Network Outputs with a Sparse Voxel Octree.  

 The key idea is to use caching to trade memory for computational efficiency at 
inference time. 

29

Image from [Yu et al., 2021]
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Caching the Network Outputs with a Sparse Voxel Octree.  

 The key idea is to use caching to trade memory for computational efficiency at 
inference time.

 There are three related papers: 
 PlenOctrees for Real-time Rendering of Neural Radiance Fields, Yu et al., 

Arxiv 2021              ~200FPS
 FastNeRF: High-Fidelity Neural Rendering at 200FPS, Garbin et al., Arxiv 2021                

         ~200FPS
 Baking Neural Radiance Fields for Real-Time View Synthesis, Hedman et al., 

Arxiv 2021        ~84FPS

30
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Caching the Network Outputs with a Sparse Voxel Octree.  

 The key idea is to use caching to trade memory for computational efficiency at 
inference time.

 Specifically, 
      (1) Train a NeRF-like network to predict density and color for each sampled point. 
      

31

MLPs 

(𝑝𝑝, 𝑣𝑣)
(𝑐𝑐,σ)
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Caching the Network Outputs with a Sparse Voxel Octree.  

 The key idea is to use caching to trade memory for computational efficiency at 
inference time.

 Specifically, 
      (1) Train a NeRF-like network to predict density and color for each sampled point. 
      (2) After training, extract the volumetric content and represent it using a sparse voxel 
Octree. 
      (3) Precompute the network outputs for each octree leaf. 

32
Image from [Yu et al., 2021]
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Using Multiple Shallow Networks

 A single high-capacity MLP for representing the entire scene can be replaced 
with thousands of small MLPs for the decomposed parts of the scene. 

 KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny 
MLPs, Reiser et al., Arxiv 2021 ~13 FPS 

34

Image from [Reiser et al., 2021]
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Using Multiple Shallow Networks

 A single high-capacity MLP for representing the entire scene can be replaced 
with thousands of small MLPs for the decomposed parts of the scene. 

 The similar idea is also used in: 
    DeRF: Decomposed Radiance Fields, Rebain et al., CVPR 2021  ~0.18 FPS

35

Image from [Rebain et al., 2021]



Fast Rendering of Neural Radiance Fields, Lingjie Liu

Mixture of Volumetric Primitives
Lombardi, Simon, Schwartz, Zollhoefer, Sheikh, Saragih
SIGGRAPH 2021
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Mesh-based Rendering

Decoder

,Mesh vertices Texture

Camera
pose

Expression 
vector
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Mixture of Volumetric Primitives

,Mesh vertices Volumetric
“texture”

Decoder

Camera
pose

Expression 
vector
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Raymarching MVP
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Results
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Depth-guided Sampling

 Predicting depths for more efficient sampling:
    DONeRF: Towards Real-Time Rendering of Neural Radiance Fields using 
Depth Oracle Networks, Neff et al., Arxiv 2021   ~15 FPS

46

Image from [Neff et al. 2021]
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Learning Integral by a Neural Network

 A general framework to integrate signals with implicit neural representation, 
which can be used in volume rendering. 

    AutoInt: Automatic Integration for Fast Neural Volume Rendering, Lindell et 
al., CVPR  2021.    ~0.4 FPS

47

Image from [Lindell et al. 2021]
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Light Field Networks:
Neural Scene Representations with Single-Evaluation

Rendering
Vincent Sitzmann* Semon Rezchikov*

William T. Freeman Joshua B. Tenenbaum Frédo Durand
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3D-structured Neural Scene Representations

:ℝ3 → ℝn

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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3D-structured Neural Scene Representations

:ℝ3 → ℝn

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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3D-structured Neural Scene Representations

:ℝ3 → ℝn

Hundreds of samples per ray.

256x256 image takes >30 seconds (volumetric).

Time- and memory-intensive training.
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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:ℝ3 → ℝn

Light Field

[Adelson et al. 1991, Levoy et al. 1996, Gortler et al. 1996]
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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:ℝ3 → ℝn

Light Field Networks

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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:ℝ3 → ℝn

Light Field Networks

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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Light Field Networks

Plücker Coords.

Conditioning

An Alternative Scene Representation
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Real-time. No post-processing, no discrete data structures (octrees, voxelgrids, …).
>100x reduction in memory: Can be trained on small GPUs!
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Light Field Networks
500 FPS
1 evaluation per ray
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Also Encode Depth in their 4D derivatives:
can be extracted via single evaluation of neural network and its gradient!

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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Results LimitationsLFN GeometryParameterization Meta-Learning

Ψ𝝍𝝍

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021

ΦΨ
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Ψ𝝍𝝍 ΦΨ

Parameterization

Ray Parameterizations for LFNs
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Conventional Light Field Parameterizations

Two-Plane Lumigraph Two-SphereCylindrical

Not 360° Not 360° Not Continuous Bounded Scenes

Difficult to use as a complete scene representation

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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“Point-direction” coordinates

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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“Point-direction” coordinates

Not unique: Same ray, two different coordinates.

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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Unique: invariant to choice of x.

Parameterize all rays without special cases.

Impractical for discrete representations, since ∈ ℝ⁶.

Plücker coordinates

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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Plücker coordinates

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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Plücker coordinates

Parameterize 360 degree light fields of unbounded scenes.
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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LFN GeometryParameterization

Extracting Scene Geometry from LFNs

V
i
n
c
e
n
t
S
i
t
z
m
a
n
n
&
S
e
m
o
n
R
e
z
c
h
i
k
o
v
,
N
e
u
r
I
P
S
2
0
2
1



Fast Rendering of Neural Radiance Fields, Lingjie Liu

The geometry of LFNs

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021



Fast Rendering of Neural Radiance Fields, Lingjie Liu

The geometry of LFNs

p

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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The geometry of LFNs

p
p

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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The geometry of LFNs
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The geometry of LFNs
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p

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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The geometry of LFNs

p
p

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021



Fast Rendering of Neural Radiance Fields, Lingjie Liu

Epipolar Plane Image

c(s,t)

The geometry of LFNs

p
p

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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The geometry of LFNs

p
p τ

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021

Epipolar Plane Image

c(s,t)
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The geometry of LFNs

p
p

τ

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021

τ p

Epipolar Plane Image

c(s,t)
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The geometry of LFNs

p
p

τ

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021

Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI.

τ p

Epipolar Plane Image

c(s,t)
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The geometry of LFNs

p

p
p

Epipolar Plane Image

c(s,t)

Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI.

Slope of line decreases as point moves closer.

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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The geometry of LFNs

p
p

Epipolar Plane Image

c(s,t)

p

Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI.

Slope of line decreases as point moves closer.

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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The geometry of LFNs

p
p

Epipolar Plane Image

c(s,t)

p

Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI.

Slope of line decreases as point moves closer.

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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The geometry of LFNs

p
p

Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI.

Slope of line decreases as point moves closer.

Gradient of c(s,t) is orthogonal to levelset -

∇c(s,t)

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021

Epipolar Plane Image

c(s,t)

p
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The geometry of LFNs

p

p

p ∇c(s,t)

Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI.

Slope of line decreases as point moves closer.

Gradient of c(s,t) is orthogonal to levelset - can extract depth from gradients of light field.
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021

Epipolar Plane Image

c(s,t)
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The geometry of LFNs

p

p

p ∇c(s,t)

Epipolar Plane Image

c(s,t)

Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI.

Slope of line decreases as point moves closer.

Gradient of c(s,t) is orthogonal to levelset - can extract depth from gradients of light field.
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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Multi-view consistency

c(s,t)

τ

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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Results LimitationsParameterization LFN Geometry Meta-Learning

Ψ𝝍𝝍

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021

ΦΨ

Meta-Learning Multi-View
Consistency
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Learning a space of multi-view consistent light fields

+
}

}
,…

,…

embedding
𝑧𝑧0

{

{
embedding
𝑧𝑧1

embedding
𝑧𝑧𝑛𝑛

𝑧𝑧𝑗𝑗=0,…,𝑛𝑛~𝒩𝒩(0, 𝜎𝜎2)

}
,…

{
+

+

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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Decode embedding into scene representation

embedding
𝑧𝑧0

1[Schmidhuber et al. 1992, Schmidhuber et al. 1993, Stanley et al. 2009, Ha et al., 2016]

LFNHypernetwork1

Ψ𝝍𝝍 Φ𝜙𝜙=Ψ𝜓𝜓(𝑧𝑧0)

Rendering

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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Decode embedding into scene representation

Φ𝜙𝜙=Ψ𝜓𝜓(𝑧𝑧0)

embedding
𝑧𝑧0

LFN

Ψ𝝍𝝍

arg min
𝑀𝑀

𝑧𝑧𝑗𝑗 𝑗𝑗=1,𝝍𝝍
𝜓𝜓 𝑗𝑗 𝑖𝑖RE N D E R (Φ𝜙𝜙=Ψ (𝑧𝑧 ), 𝜉𝜉𝑖𝑖) − ℐ𝑗𝑗

𝑗𝑗 𝑖𝑖

Rendering

Hypernetwork

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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Test time: Initialize new embedding

Φ𝜙𝜙=Ψ𝜓𝜓(𝑧𝑧new)

LFN

Ψ𝝍𝝍

Rendering
embedding
𝑧𝑧new

Hypernetwork

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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Freeze weights & optimize latent code only.

Φ𝜙𝜙=Ψ𝜓𝜓(𝑧𝑧new)

LFN

Ψ𝝍𝝍

Rendering

𝑧𝑧 = arg min
𝑧𝑧

RE N D E R (Φ𝜙𝜙=Ψ𝜓𝜓(𝑧𝑧0), 𝜉𝜉) − ℐ

embedding
𝑧𝑧new

Hypernetwork

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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Parameterization LFN Geometry Meta-Learning Results

Ψ𝝍𝝍 ΦΨ

Limitations

Limitations

V
i
n
c
e
n
t
S
i
t
z
m
a
n
n
&
S
e
m
o
n
R
e
z
c
h
i
k
o
v
,
N
e
u
r
I
P
S
2
0
2
1



Fast Rendering of Neural Radiance Fields, Lingjie Liu

Limitations

One color per ray

Multi-view Consistency 

Local conditioning

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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Limitations

One color per ray

Multi-view Consistency

Local conditioning

Context Views

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021

Overfitting single scene (with positional encoding)

Intermediate Views
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Limitations

One color per ray

Multi-view Consistency

Local conditioning

pixelNeRF Yu et al. 2020

Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
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