Overview

0. Fundamentals of Classical Rendering Techniques in Computer Graphics

|. Three pioneering works in Neural Scene Representations and Neural Rendering
- Scene Representation Networks (SRN)

- Neural Volumes (before that: Deep Appearance Models)
- Neural Radiance Fields (NeRF)

2. Different Neural Scene Representations

- Uniform Grids -> Sparse Grids -> Multiresolution Grids -> Hash Grids
- Point Clouds / Gaussian Splats

- Surface Mesh / Volumetric Mesh (Tetrahedron)

- Multiplane Images




Hybrid Representations
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Usually 128, 256, 512 samples or
more..
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Hybrid Representations

Hybrid Representations for Neural Fields in 2013

Global lllumination with Radiance Regression Functions
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Figure 1: Real-time rendering results with radiance regression functions for scenes with glossy interreflections (a), multiple local lights (b),
and complex geometry and materials (c).

Abstract

We present radiance regression functions for fast rendering of
global illumination in scenes with dynamic local light sources. A
radiance regression function (RRF) represents a non-linear map-
ping from local and contextual attributes of surface points, such as
position, viewing direction, and lighting condition, to their indirect
illumination values. The RRF is obtained from precomputed shad-
ing samples through regression analysis, which determines a func-
tion that best fits the shading data. For a given scene, the shading
samples are precomputed by an offline renderer.

The key idea behind our approach is to exploit the nonlinear co-
herence of the indirect illumination data to make the RRF both
compact and fast to evaluate. We model the RRF as a multilayer
acyclic feed-forward neural network, which provides a close func-
tional approximation of the indirect illumination and can be effi-
ciently evaluated at run time. To effectively model scenes with spa-

Keywords: global illumination, real time rendering, neural net-
work, non-linear regression

1 Introduction

Global light transport provides scenes with visually rich shading
effects that are an essential component of photorealistic rendering.
Much of the shading detail arises from multiple bounces of light.
This reflected light, known as indirect illumination, is generally ex-
pensive to compute. The most successful existing approach for in-
direct illumination is precomputed radiance transfer (PRT) [Sloan
et al. 2002; Ramamoorthi 2009], which precomputes the global
light transport and stores the resulting PRT data for fast render-
ing at run time. However, even with PRT, real-time rendering with
dynamic viewpoint and lighting remains difficult.

Two major challenges in real-time rendering of indirect illumina-
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(a) Node in partitioned
space

(b) Expanded
training box

(c) Subspace
bounding box

(d) Normalized
subspace for
training

Figure 4: Partitioning of input space for fitting of multiple RRFs.



Uniform Grids
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[PIFu (Saito et al.), Neural Volumes (Lombardi et al.), etc]



Uniform Grids

Pros:

Easy to implement

Algorithmically fast access

Established operations like convolutions
Simple topology

Cons:

* Expensive in memory and bandwidth

o
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[PIFu (Saito et al.), Neural Volumes (Lombardi et al.), etc]



Sparse Grids

[DeepLS (Chabra et al.), NSVF (Liu et al.), NGLOD (Takikawa et al.), etc]



Sparse Grids

[DeepLS (Chabra et al.), NSVF (Liu et al.), NGLOD (Takikawa et al.), etc]

Pros:

Memory Efficient

Algorithmically efficient access
GPU-compatible data structures
Established operations like sparse 3D
convs

Cons:
* Need to manage a complex data

structure
* Topology hard to generate



NSVF (Liu et al)

Scene Representation - Neural Sparse Voxel Fields (NSVF).
Volume Rendering with NSVF.

Camera

e

<+

RGB Loss

Ray-Voxel Intersection Ray-Marching inside Voxel Predicted Image Ground-truth Image

Progressive Learning: we train NSVF progressively with the differentiable
volume rendering operation from a set of posed 2D images.

Tidass
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Multiresolution Grids

[NGLOD (Takikawa et al.), ACORN (Lindell et al.), Instant-NGP (Muller et al.), etc]



Multiresolution Grids

Pros:

* Multiple streaming levels of detail (LOD)
* Wider support region

Cons:

* More memory
* More complexity

[NGLOD (Takikawa et al.), ACORN (Lindell et al.), Instant-NGP (Muller et al.), etc]



NGLOD (Takikawa et al.)

_\ 903.63 KB
210.75 KB 17kB 37kB 131 kB 531 kB
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Hash Grids

i)

Codebook

[Instant-NGP (Muller et al.)]



Hash Grids

Pros:

* Disaggregate resolution from

memory cost
* No complex data structures

* Performant memory access if
codebook is small enough

Cons:

i)

Codebook

* Multiresolution and large codebooks
needed for collision resolution
* Features not spatially local

[Instant-NGP (Muller et al.)]



Instant-NGP (Muller et al.)




Point Clouds

[Liu et al. 2019, LDIF (Genova et al.), 3DILG (Zhang et al.) etc]



Point Clouds

Pros:

* Can be densely supported in space
* Expressive

Cons:

* Often needs complex data structures for fast
access and interpolation

o

[Liu et al. 2019, LDIF (Genova et al.), 3DILG (Zhang et al.) etc]



DCC-DIF (Li et al.)
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(a) Interpolation of latent grids

(b) Interpolation of ours

[Lietal.]

(a) NGLOD3 (b) NGLODS (c) Ours (d) Reference

NGLOD3 [38] NGLOD4 [38] NGLODS [38] Ours
99.0 99.3 99.4 99.5

3.69 3.59 3.57 3.55
5.7K/0.9K 41.7K/3.7K 316K/15K 5.6K
4.7K 4.7K 4.7K 47K



Gaussian Splats
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Optimization
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Under-
Reconstruction
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Optimization
Continues

Over-
Reconstruction

[Kerbl et al. 2019]



Gaussian Splats

Pros:

* Expressive
* Compatible with efficient rasterization

Optimization

Under
Reconstruction

Continues

Cons:

* Need a good initialization of point locations
* Redundancy
* Cannot produce high-quality surface

LI

Optimization

Over
Reconstruction

Continues

[Kerbl et al. 2019]



Mesh (Unstructured Grids)

[DefTet (Gao et al.), NeuralBody (Peng et al.), etc]



Mesh (Unstructured Grids)

Pros:

* Can use the rich sets of tools in mesh
processing
* Compatible with fast rendering

Cons:

* Limited spatial resolution
* Hard to optimize

[DefTet (Gao et al.), NeuralBody (Peng et al.), etc]



Deep Marching Tetrahedra (Shen et al.)
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Multiplanar Images




Multiplanar Images

Pros:

* More compact than 3D dense
grids

* Compatibility with 2D pipelines

Cons:

* Resolution bias on plane axis

[Convolutional OccNet (Peng et al), EG3D (Chan et al.), etc]



EG3D (Chan et al.)
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Design Tradeoffs

Quality

Size




Design Tradeoffs

Generative Quality

Modeling Support

Entropy

Compatibility with
Existing Tools

Ease of Implementation



Design Tradeoffs
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Any Questions?
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