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TODOs
1. Paper Selection and Registration: [Important! Deadline was yesterday. If you haven’t
done it, please do it now!]
Please select and register for the two papers you would like to present using the following Excel
link:
https://docs.google.com/spreadsheets/d/1_FJueXqWnKWoYOGZTNiwp2qRmSP0u1H6ayEYE5j3Ib0
/edit?gid=0#gid=0

2. Presentation Preparation:
• Ensure you are fully prepared one class before your scheduled class for presentation.
• Upload your slides to the Google folder (https://drive.google.com/drive/folders/1NO-

JdWIRtKiLGZOMQxCOUso0AjdtrypY) at least one hour before the class prior to your
assigned class for presentation. This is important in case of an emergency requiring us to
reschedule your talk.

• For example, if you’re presenting on Monday, upload your slides by the previous Wednesday at
2:30 PM. If presenting on Wednesday, upload by Monday at 2:30 PM.

3. Class Participation:
•Before each class, please read the papers that will be discussed and submit two questions at least 
one hour before the class using the following link: 
https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-
2sAKOJmBYQ/viewform

Wed Mon Wed

https://docs.google.com/spreadsheets/d/1_FJueXqWnKWoYOGZTNiwp2qRmSP0u1H6ayEYE5j3Ib0/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1_FJueXqWnKWoYOGZTNiwp2qRmSP0u1H6ayEYE5j3Ib0/edit?gid=0#gid=0
https://drive.google.com/drive/folders/1NO-JdWIRtKiLGZOMQxCOUso0AjdtrypY
https://drive.google.com/drive/folders/1NO-JdWIRtKiLGZOMQxCOUso0AjdtrypY
https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-2sAKOJmBYQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfSxryv_JO9Ffbd7iKCIqnczqPWJUqv3OGFI6K-2sAKOJmBYQ/viewform


Course Link: 
https://neural-representation-2024.github.io/topics.html
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Review of Last Class
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1. Challenges in using classical computer 
graphics pipeline for 3D reconstruction and 
photorealistic rendering

2. Neural scene representation and neural 
rendering is the rescue

3. Neural Rendering: 
Deep neural networks for image or video 
generation that enable explicit or implicit 
control of scene properties
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4. Different neural rendering methods
- Using neural rendering to learn neural 
fields. 

5. Neural Fields: 
A field is a quantity defined for all spatial 
and/or temporal coordinates;
A neural field is a field that is parameterized 
fully or in part by a neural network.

Review of Last Class



What we want to 
reconstruct:

What we can 
measure:

The bridge:
differentiable renderer

Optimization via gradient descent

Depth Image

RGB Image

Sensor DomainCoordinate Sampling

Spatial

Temporal t

yx

z

Neural Network Forward Map

Volume Rendering

Sphere Tracing

Radiance + Density Field

Reconstruction Domain

Signed Distance Field

Conditioning
z

MLP

Hybrid

Neural Fields General Framework



BRDF Shading



Overview of This Class

0.  Fundamentals of Classical Rendering Techniques in Computer Graphics

1. Three pioneering works in Neural Scene Representations and Neural Rendering
- Scene Representation Networks (SRN)
- Neural Volumes (before that: Deep Appearance Models)
- Neural Radiance Fields (NeRF)

2. Different Neural Scene Representations (Next Class)
- Uniform Grids -> Sparse Grids -> Multiresolution Grids -> Hash Grids
- Point Clouds 
- Surface Mesh / Volumetric Mesh (Tetrahedron)
- Multiplane Images
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Computer Graphics

Geometry Processing Rendering Animation / Simulation









Continuous Triangle Function After Rasterization

Jaggies! (Aliasing)



Rasterization = Sample 2D Positions

Photograph = Sample Image Sensor Plane

Video = Sample Time



Sampling Artifacts (Errors / Mistakes / Inaccuracies) in Computer Graphics

Jaggies (Aliasing)
Moire Patterns

Wagon Wheel Illusion (False Motion)





How to do photo-realistic rendering?



Radiometry

● Radiant flux (power):
○ the energy emitted, reflected, transmitted or received, per unit time  

● Irradiance:
○ How much light received by a “surface” 
○ Definition: power per unit area on a surface point
○ Lambert’s Law: irradiance at surface is proportional to cosine of angle 

between light direction and surface normal.

where



● Radiance:
○ How much light travelling along a “ray” (light received by 

an area from a direction)
○ Definition: power emitted, reflected, transmitted or 

received by a surface, per unit solid angle, per projected 
unit area

Radiometry

Radiance = Irradiance per solid angle 

where



BRDF

Bidirectional Reflectance Distribution Function (BRDF)

● How much light is reflected into each outgoing direction       from each incoming direction
● BRDF can be simply regarded as diffusion + specular (we will discuss this in detail in later classes).

The Reflection Equation:

● Total light reflected from the outgoing direction

irradiance

Incoming radiance

Outgoing radiance



The Rendering Equation

● The rendering equation can be derived by adding an emission term to 
the reflection equation.

● The rendering equation is a Fredholm Integral Equation of second kind:

● Use linear operators:

Reflected light 
(output image) Emission Incident light BRDF Cosine of 

incident angle

Light transport matrix



Ray Tracing

Solve the rendering equation using linear operators

Emission 
directly from 
light sources

Direct 
illumination

Indirect illumination (one bounce, two 
bounce, …)

It involves: 
(1) solving the integral over the 
hemisphere 
(2) recursive execution.



Monte Carlo Integration

It is intractable to solve the integrals from the rendering equation directly. Instead, 
we go for Monte Carlo integration (emission is omitted):

where we sample N incoming directions from a given Probability Density Function

(pdf)

Monte Carlo Estimation:



Towards real-time ray tracing

Real-time ray tracing itself is an active research area. Several aspects can be used to 
improve the rendering efficiency:

● Efficient data structure (e.g. bounding volume hierarchy (BVH))
○ Use a tree structure to partition the space which speed-up the ray intersection.

● Importance Sampling

● Learning based denoising



Towards real-time ray tracing

Real-time ray tracing itself is an active research area. Several aspects can be used 
to improve the efficiency:

● Efficient data structure (e.g. bounding volume hierarchy (BVH))

● Importance Sampling on Materials (BRDF)
○ Instead of uniformly sampling on the semi-sphere, we can sample more points 

based on the shape of BRDF (diffusion + specular).
○ It can also be combined with “sampling on light” which means “multiple 

importance sampling”.

● Learning based denoising



Towards real-time ray tracing

Real-time ray tracing itself is an active research area. 
Several aspects can be used to improve the 
efficiency:

● Efficient data structure (e.g. bounding volume 
hierarchy (BVH))

● Importance Sampling

● Learning based denoising/super-sampling
○ Use deep learning techniques, it is also 

possible to trace less paths for each pixel or 
lower resolution image, and then use neural 
network to get the final image.



Results of ray tracing: Photo-realistic



Other Modern Ray Tracing Algorithms

● Bidirectional path tracing
● Photon Mapping
● Metropolis light transport
● Multiple Importance Sampling (MIS)
● Quasi-Monte Carlo methods (QMC)
● Finite Element Radiosity
● ...



0.  Fundamentals of Classical Rendering Techniques in Computer Graphics

1. Three pioneering works in Neural Scene Representations and Neural Rendering
- Scene Representation Networks (SRN)
- Neural Volumes (before that: Deep Appearance Models)
- Neural Radiance Fields (NeRF)

2. Different Neural Scene Representations (Next Class)
- Uniform Grids -> Sparse Grids -> Multiresolution Grids -> Hash Grids
- Point Clouds 
- Surface Mesh / Volumetric Mesh (Tetrahedron)
- Multiplane Images
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Scene Representation Networks (SRN)

Sitzmann, Zollhoefer, Wetzstein
NeurIPS 2019





Infer Neural Scene Representation from 2D observations.

Neural Scene 
Representation

Learned feature 
representation of 

scene.



Formulate Neural Renderer.

Neural Scene 
Representation

Learned feature 
representation of 

scene.

Neural Renderer

Render from different 
camera perspectives.



Finally: Predict training views & enforce loss on re-rendering error!

Neural Scene 
Representation

Learned feature 
representation of 

scene.

Neural Renderer

Render from different 
camera perspectives.

Image Loss



Self-supervised Scene Representation Learning

Neural Scene 
Representation

Learned feature 
representation of 

scene.

Neural Renderer

Render from different 
camera perspectives.

Image Loss



Scene Representation Network parameterizes scene as MLP.

𝒙𝒙 ∈

𝒙𝒙 ∈

𝒙𝒙 ∈ Free 
Space

Φ: ℝ3→  ℝn

Scene 
Representation 

Network

Free Space

Objects

𝑥𝑥1

𝑥𝑥2

…
…

…
…

[ ]
[]
[]

Sitzmann et al., NeurIPS 2019



Observations

Scene Representation Networks

Image Loss

Neural Renderer

Φ: ℝ3→ ℝn

Neural Scene 
Representation

Sitzmann et al., NeurIPS 2019

, ,…

Re-Rendered 
Observations

, ,…



Observations

Scene Representation Networks

Image Loss

Neural Renderer

Φ: ℝ !→  ℝ"

Neural Scene 
Representation

, ,…

Re-Rendered 
Observations

, ,…

Sitzmann et al., NeurIPS 2019



Each scene represented by its own SRN.

Sitzmann et al., NeurIPS 2019



Manifold assumption.

Sitzmann et al., NeurIPS 2019



Represent each scene by low-dimensional embedding.

Sitzmann et al., NeurIPS 2019



Map embeddings to SRN parameters via Hypernetwork.

Sitzmann et al., NeurIPS 2019





Neural Volumes
Lombardi, Simon, Saragih, Schwartz, Lehrmann, Sheikh
SIGGRAPH 2019



Decoder

Deep Appearance Models
View-Conditioned Decoder

Camera 
pose

Expression 
vector

Lombardi, Saragih,Simon,Sheikh
SIGGRAPH 2018



DecoderEncoder

Tracked Texture

Tracked Geometry

Deep Appearance Models

Camera 
pose

Expression 
vector



DecoderEncoder

Tracked Texture

Tracked Geometry

Deep Appearance Models

Camera 
pose

Expression 
vector



Limitations of mesh-based rendering



Why Volumetric Rendering?



Decoder

Mesh/Texture Decoder

Camera 
pose

Expression 
vector

Mesh, Texture



Decoder

Volume Decoder

Camera 
pose

Expression 
vector

Color & Opacity Field



Volumetric Neural Rendering

Decoder

Target ImageReconstruction
Camera

pose

Expression 
vector

TrainingRaymarchingDecoding



Neural Volumes Decoder

Transposed 3D
Convolution

Reshape

1024 512x
2x2x21024x

1x1x1

512x
4x4x4
256x

8x8x8
256x

16x16x16

128x
32x32x32

256

128x
64x64x64

4x
128x128x128

Features x 
Spatial Dimensions

Expression
vector





Warp Field Decoder

3D CNN

Template Volume

Warp Field

Expression
vector

3D CNN



TemplateVolume with Warping



Example Reconstructions



Neural Radiance Fields (NeRF)

Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng
ECCV 2020



Neural Volumetric Rendering



Neural Volumetric Rendering
querying the radiance value 
along rays through 3D space

What colour?



Neural Volumetric Rendering
continuous, differentiable 
rendering model without 

concrete ray/surface intersections



Neural Volumetric Rendering
using a neural network as a 
scene representation, rather 

than a voxel grid of data

Scene 
properties(x, y, z)



Inputs: sparse, unstructured 
photographs of a scene

Outputs: representation allowing us to 
render new views of that scene

…



Overview of NeRF

‣ Volumetric rendering math

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

‣ NeRF improvements and extensions



Traditional volumetric rendering

‣ Theory of volume rendering co-opted from physics in the 
1980s: absorption, emission, out-scattering/in-scattering

‣ Adapted for visualising medical data and linked with 
alpha compositing

‣ Modern path tracers use sophisticated Monte Carlo 
methods to render volumetric effects

9

Chandrasekhar 1950, Radiative Transfer
Kajia 1984, Ray Tracing Volume Densities
Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering
Porter and Duff 1984, Compositing Digital Images
Novak et al 2018, Monte Carlo methods for physically based volume rendering



Traditional volumetric rendering

‣ Theory of volume rendering co-opted from physics in the
1980s: absorption, emission, out-scattering/in-scattering

‣ Adapted for visualising medical data and linked with 
alpha compositing

‣ Modern path tracers use sophisticated Monte Carlo
methods to render volumetric effects
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Chandrasekhar 1950, Radiative Transfer
Kajia 1984, Ray Tracing Volume Densities
Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering
Porter and Duff 1984, Compositing Digital Images
Novak et al 2018, Monte Carlo methods for physically based volume rendering

Medical data visualisation 
[Levoy]

Alpha compositing [Porter and Duff]



Traditional volumetric rendering

‣ Theory of volume rendering co-opted from physics in the
1980s: absorption, emission, out-scattering/in-scattering

‣ Adapted for visualising medical data and linked with 
alpha compositing

‣ Modern path tracers use sophisticated Monte Carlo 
methods to render volumetric effects

11Novak et al 2018, Monte Carlo methods for physically based volume rendering

Chandrasekhar 1950, Radiative Transfer
Kajia 1984, Ray Tracing Volume Densities
Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering
Porter and Duff 1984, Compositing Digital Images

Physically-based Monte Carlo rendering [Novak et 
al]



Volumetric rendering and machine learning

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction via Differentiable Ray Consistency
Henzler et al 2019, Escaping Plato’s Cave: 3D Shape From Adversarial Rendering

12
Zhou et al 2018, Stereo Magnification: Learning View Synthesis using Multiplane Images
Lombardi et al 2019, Neural Volumes: Learning Dynamic Renderable Volumes from 
Images

‣ Various volume-rendering-esque methods devised for 3D 
shape reconstruction methods

‣ Scaled up to higher resolution volumes to 
achieve

excellent view synthesis results

“Probabilistic” voxel grid rendering [Tulsiani et al]
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Volumetric rendering and machine learning

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction via Differentiable Ray 
Consistency
Henzler et al 2019, Escaping Plato’s Cave: 3D Shape From Adversarial Rendering
Zhou et al 2018, Stereo Magnification: Learning View Synthesis using Multiplane Images
Lombardi et al 2019, Neural Volumes: Learning Dynamic Renderable Volumes from Images

Slices from a volumetric scene 
representation [Zhou et al]

‣ Various volume-rendering-esque methods devised for 3D
shape reconstruction methods

‣ Scaled up to higher resolution voxel grids, ML methods 
can achieve excellent view synthesis results

√

View synthesis from a dynamic 
voxel grid [Lombardi et al]



Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral

Volumetric formulation for NeRF



Volumetric formulation for NeRF

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral



Volumetric formulation for NeRF

If a ray traveling through the scene hits a 
particle at t, we return its color c(t)

Camera

Ray r(t) =  o +  td



Volumetric formulation for NeRF

This notion is probabilistic: chance that ray 
stops in a small interval around t is σ(t) dt.

σ(t)  is known as the “volume density”

P[hit at t] =  σ(t) dt



Volumetric formulation for NeRF

To determine if t is the first hit, need to know T(t): 
probability that the ray didn’t hit any particles earlier.

T(t) is called “transmittance”

P[no hits before t] =  T(t)



Volumetric formulation for NeRF

To determine if t is the first hit, need to know T(t): 
probability that the ray didn’t hit any particles earlier.

T(t) is called “transmittance”
We assume σ is known and want to use it to calculate T(t)

P[no hits before t] =  T(t)



Volumetric formulation for NeRF

σ and T  are related by the probability fact that
P[no hits before t +  dt] =  P[no hits before t] × P[no hit at t]

P[no hits before t] =  T(t)
P[hit at t] =  σ(t) dt



Volumetric formulation for NeRF

These are related by the probability fact that
P[no hits before t +  dt] P[no hits before t]=  ×P[no hit at t]

P[no hits before t] =  T(t)
P[hit at t] =  σ(t) dt

T(t +  dt) T(t) (1 − σ(t)dt)



Volumetric formulation for NeRF

T(t +  dt) =  T(t)(1 − σ(t)dt)



Volumetric formulation for NeRF

T(t +  dt) =  T(t)(1 − σ(t)dt)

Split up differential ⇒ T(t) +  T′(t)dt =  T(t) − T(t)σ(t)dt



Volumetric formulation for NeRF

T(t +  dt) =  T(t)(1 − σ(t)dt)

Split up differential ⇒ T(t) +  T′(t)dt =  T(t) − T(t)σ(t)dt

Rearrange ⇒
T(t)
T′(t) dt =  − σ(t)dt



Volumetric formulation for NeRF

T(t +  dt) =  T(t)(1 − σ(t)dt)

Split up differential ⇒ T(t) +  T′(t)dt =  T(t) − T(t)σ(t)dt

Rearrange ⇒
T(t)
T′(t) dt =  − σ(t)dt

Integrate ⇒



Volumetric formulation for NeRF

Thus, the probability that a ray first hits a particle at t is



Volumetric formulation for NeRF



Approximating the nested integral

We use quadrature to approximate the nested integral,



We use quadrature to approximate the nested integral,
splitting the ray up into segments with endpoints {t1, t2, … ,  tn+1}

tn+1

ti

t1

n

Approximating the nested integral



We use quadrature to approximate the nested integral,
splitting the ray up into segments with endpoints {t1, t2, … ,  tn+1}

with lengths δi =  ti+1 − ti

tn+1

δi

ti

t1

n

Approximating the nested integral



We assume volume density and color are 
roughly constant within each interval

ti

Approximating the nested integral



This allows us to break the outer integral

into a sum of analytic integrals

Approximating the nested integral



This allows us to break the outer integral 
into a sum of analytically tractable integrals

Approximating the nested integral



Catch: piecewise constant density and color
do not imply constant transmittance!

Approximating the nested integral



Catch: piecewise constant density and color
do not imply constant transmittance!

Important to account for how early part of a 
segment blocks later part when is high

Approximating the nested integral



Approximating the nested integral



Approximating the nested integral



Approximating the nested integral



Approximating the nested integral



Approximating the nested integral



Approximating the nested integral



Approximating the nested integral



Connection to alpha compositing



Connection to alpha compositing



Summary: volume rendering integral estimate

3D volume

Camera

Ray

tn+1

t1 Ti

αi

ti



Summary: volume rendering integral estimate

3D volume

Camera

Ray

tn+1

t1 Ti

αi

ti

How do we store the values of
c, at each point in space?



Overview

‣ Volumetric rendering math

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

‣ NeRF improvements and extensions



Toy problem: storing 2D image data

(x, y) (r, g, b)

Usually we store an image as a 
2D grid of RGB color values



Toy problem: storing 2D image data

FΩ

(x, y) (r, g, b)

What if we train a simple fully-connected 
network (MLP) to do this instead?



Naive approach fails!



Problem:

“Standard” coordinate-based MLPs cannot represent high-
frequency functions



Solution:

Pass input coordinates through a 
high frequency mapping first



Input coordinate mapping

‣ Simple formula: apply a tall skinny matrix B to input coordinate vector x, 
then pass through sin and cos:

‣ Passing network a subset of the Fourier basis functions. Same effect from:
‣ Positional encoding
‣ Fourier features
‣ SIREN



Problem solved



Overview

‣ Volumetric rendering math

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

‣ NeRF improvements and extensions



NeRF = volume rendering + 
coordinate-based network



(x, y, z, θ, ϕ) (r, g, b, σ)

FΩ



∥2

Train network to reproduce input views of scene 
using gradient descent

Volume rendering 
applied to MLP

∇∥ −
Ground truth

image



Visualizing view-dependent effects

70
Regular NeRF rendering Manipulating input viewing directions



Visualizing learned density field as geometry

Regular NeRF rendering Expected ray termination depth



Visualizing learned density field as geometry

Regular NeRF rendering Expected ray termination depth



Acknowledgments
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• Advances in Neural Rendering

• Neural Fields in Visual Computing and Beyond

• awesome-NeRF: a curated list of awesome neural radiance fields papers

• MPII Summer Semester 2023: Computer Vision and Machine Learning for Computer 
Graphics

• Lingqi Yan’s Slides for Rendering



Any Questions?
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